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 1. Executive summary
Several satellites measure Sea Surface Temperature (SST), each with different technical 
specificities and error sources. Together with in situ data, they form a highly complementary 
data set. The creation of merged SST products, integrating the strengths of each of its 
components and minimising their weaknesses, is however not an easy task, but it is certainly 
a desirable goal that has generated a large amount of research over the last years. The work 
developed in the frame of HiSea (High resolution merged satellite Sea surface temperature 
fields) aimed to provide a technique to merge several data sources using DINEOF (Data 
Interpolating Empirical Orthogonal Functions), by addressing the following tasks:

- Development of a technology that allows to merge different data sets at very different 
sampling intervals (in space and time) and create an integrated product at the highest 
sampling frequency and with the highest quality possible.

- Provide improved, merged analyses of variables such as SST and Total Suspended Matter.

- Improve our understanding of the relation between variables (and take advantage of this 
improved knowledge to ameliorate the analyses). 

- Using the above-mentioned developments, explore the capability of DINEOF to produce 
forecasts based on multi-variate EOFs and model forecasts. 

DINEOF is a technique to infer missing data in satellite data sets. In this project DINEOF was 
further developed so that it can merge different data sets. First, an initial DINEOF 
reconstruction of a data set with a high spatial resolution is made, and the EOF basis 
obtained is used as the covariance matrix needed to subsequently include into the analysis 
other data sources (satellite and in situ). Error estimations for each data set are used to 
weight their influence in the final product. 

Merged high-resolution (in space and time) SST data sets and error statistics were obtained 
for the Mediterranean Sea for 2009. Analyses with total suspended matter were also 
performed in the North Sea for the year 2008. The improvements made to the base technique 
used throughout the project (DINEOF) will be made available freely and openly to the 
scientific community (source code and documentation). Results have been published in 
international peer-reviewed journals (an additional manuscript is under preparation).

 2. Report
The main results and conclusions obtained during HiSea are summarised here. The full 
reports and publications can be found in the Annexes.
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 2.1.Comparison of in situ and satellite SST data in the western 
Mediterranean Sea

A comparison between in situ and satellite sea surface temperature (SST) was realised in the 
western Mediterranean Sea for the year 1999. Five international databases were used to 
extract in situ data for the desired period and zone: World Ocean Database (WOD), 
MEDAR/Medatlas, Coriolis, International Council for the Exploration of the Sea (ICES) and 
International Comprehensive Ocean-Atmosphere Data Set (ICOADS). A careful error 
estimation was performed, classified by type of platform and database. Given to the 
heterogeneity of the data used, very different conclusions were reached when comparing 
them individually to satellite data. Among the major conclusions it was seen that ship data, 
from the ICOADS database, were the most numerous, and as such they are a valuable 
source of data. However, the error assessment between these data and satellite data showed 
a large bias and RMS error, due to the heterogeneity of the measuring approaches and 
sensors used from ships. Data from other platforms compared generally well with satellite 
data, with RMS errors from 0.6ºC to 0.9ºC and small biases.

The study was published in Ocean Dynamics, and can be found in Annex I

A. Alvera-Azcárate, C. Troupin, A. Barth, and J.-M. Beckers. Comparison between satellite 
and in situ sea surface temperature data in the Western Mediterranean Sea. Ocean 
Dynamics, 61(6):767-778, 2011.

 2.2.Detection of outliers in satellite data using spatial coherence

Satellite data sets often contain outliers (i.e., anomalous values with respect to the 
surrounding pixels), mostly due to undetected clouds and rain or to atmospheric and land 
contamination. A methodology to detect outliers in satellite data sets was developed. The 
approach was based on a truncated Empirical Orthogonal Function (EOF) basis obtained by 
analysing the data with DINEOF. The information rejected by this EOF basis was used to 
identify suspect data. A proximity test and a local median test were also performed, and a 
weighted sum of these three helped to accurately detect outliers in a data set. Most satellite 
data undergo automated quality-check analyses. The approach developed here exploited the 
spatial coherence of the geophysical fields, therefore detecting outliers that would otherwise 
pass such checks. The methodology was applied to infrared sea surface temperature (SST), 
microwave SST and chlorophyll-a concentration data over different domains, showing the 
applicability of the technique to a range of variables and temporal and spatial scales. A series 
of sensitivity tests and validation with independent data were also conducted.

This study was published in Remote Sensing of Environment, and can be found in Annex II.

A. Alvera-Azcárate, D. Sirjacobs, A. Barth, and J.-M. Beckers. Outlier detection in satellite 
data using spatial coherence. Remote Sensing of Environment, 119:84-91, 2012. 

 2.3.Development of a technology for merging several datasets using 
DINEOF

This was the core activity of the project, and consisted on developing an extension to 
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DINEOF to merge several datasets. The basic DINEOF technique is described at depth at the 
following papers: Beckers and Rixen(2003), Alvera-Azcárate et al (2005), Beckers el at 
(2006), Alvera-Azcárate et al (2007).The methodological approach used in HiSea is described 
in Annex III in detail. First, a two-step approach was developed, by performing first a DINEOF 
analysis of one dataset (from a polar-orbiting satellite) and using the obtained EOF basis in a 
second step to merge several datasets. An embedded approach was then developed, by 
basically performing step 2 of the previous approach within DINEOF, each time that the EOF 
basis is updated in the iterative process. The aim of testing these two approaches was to see 
the impact of the iterative process in the quality of the final fields of SST. Finally, an 
methodology to use a correlated error covariance matrix in DINEOF-OI was developed.

 2.4.Application of the DINEOF-merging technology to various SST 
datasets

Several applications of the DINEOF-OI technique have been performed in order to  analyse 
the obtained results. A first test was realised with AVHRR SST data and the in situ data 
described in section 2.1. The aim was to develop the technique with a small dataset. It was 
seen that using the DINEOF-OI approach improved the results over a DINEOF step alone 
(using only satellite data). We therefore moved one step further and apply DINEOF-OI to two 
satellite SST datasets.

A polar-orbiting dataset (AVHRR NAR-18) and a geostationary dataset (SEVIRI) were used 
for the year 2009. The merging results retain the high spatial correlation of the AVHRR NAR-
18 dataset (~2 km) and the high temporal resolution of the SEVIRI dataset (3 hours). The 
results were compared with OSTIA (Operational Sea Surface Temperature and Sea Ice 
Analysis), a daily global analysis of all available satellite and in situ data at a resolution of ~6 
km. OSTIA data are produced in the frame of the MyOcean project. The root mean square 
error between the DINEOF-OI analysis and the OSTIA analysis is 0.39ºC, with a bias of 
-0.09ºC (DINEOF-OI colder than OSTIA). This results demonstrate that the technique 
developed in the project gives accurate results. It must be noted that the DINEOF-OI uses 
only 2 satellite datasets and only a rough correction for the existing bias between these 
datasets is performed. It is therefore expected that the quality of the DINEOF-OI data 
increases with the use of more data and a better bias removal technique. 

Several tests were also realised to establish the impact of using a correlated covariance 
matrix in the quality of the final products. The results show that the error can be indeed 
reduced when using a correlated covariance matrix. This study suggested that errors are 
correlated at different scales (we found local minima at 20 km, 300 km and 700 km), which 
would depend on the source of the error (e.g. the longest lengths scales can be due to 
atmospheric processes).

The detailed results are presented in Annex IV.
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 2.5.Application of DINEOF-OI to other datasets

In order to demonstrate the usefulness of the technique outside the main variable analysed in 
this project, SST, and in other domain than the Mediterranean Sea, a merging analysis has 
been performed using Total Suspended Matter (TSM) data over the North Sea, using again a 
polar-orbiting dataset (MODIS) and a geostationary dataset (SEVIRI). These data were 
provided by K. Ruddick (MUMM, Brussels). Annex V presents the results, that, although 
preliminary (an improved error variance estimation should be used) show the potential of 
DINEOF-OI to be also used with variables like ocean colour. The results are compared to in 
situ data to assess their quality, showing that the merged data are able to reproduce them 
accurately.

 2.6.DINEOF forecasts

We have applied DINEOF to address the problem of forecasting a variable measured by 
satellite (TSM) using (i) previous satellite measurements of this variable, and (ii) a numerical 
model run in the same region. The aim was to provide forecasts of physical variables (such as 
currents, wind or bottom stress) at several days lead. Several combinations of variables were 
tried, but the correlation between the model variables and the satellite TSM were not high 
enough to provide meaningful results. Recommendations for future developments are to use 
better-correlated variables (maybe model SST), or using as a parameter the number of EOFs 
retained by DINEOF (choosing the one that provides better forecasts). A detailed report of the 
forecasting activities can be found in Annex VI.

 2.7.Dissemination

The activities performed during the duration of HiSea have been presented at several 
international conferences and published in peer-reviewed papers. A dedicated webpage 
(http://www.gher.ulg.ac.be/HiSea/) contains the main results and conclusions obtained 
through the project.

 a) Papers published in peer-reviewed journals

[1] A. Alvera-Azcárate, D. Sirjacobs, A. Barth, and J.-M. Beckers. Outlier detection in satellite 
data using spatial coherence. Remote Sensing of Environment, 119:84-91, 2012. 

[2] A. Alvera-Azcárate, C. Troupin, A. Barth, and J.-M. Beckers. Comparison between satellite 
and in situ sea surface temperature data in the Western Mediterranean Sea. Ocean 
Dynamics, 61(6):767-778, 2011. 

In addition, a manuscript is in preparation describing the DINEOF-OI technique.
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 b) Oral and poster presentations at international conferences and 
meetings

[1] A. Alvera-Azcárate, A. Barth, M. E. Toussaint and J.-M. Beckers. HiSea: High resolution 
merged satellite sea surface temperature fields. Belgian Earth Observation Day (BELSPO). 
Oudenburg, Belgium, 25 May 2011. Oral presentation + poster.

[2] Aida Alvera-Azcárate, Alexander Barth, and Jean-Marie Beckers. Merging satellite and in 
situ sea surface temperature data using DINEOF. Geophysical Research Abstracts, Vol. 13, 
EGU2011-5939. EGU General Assembly 2011, Oral presentation.

[3] Aida Alvera-Azcárate, Alexander Barth, and Jean-Marie Beckers. Satellite and in situ sea 
surface temperature comparison and merging in the Mediterranean Sea. Third International 
Workshop on Advances in the Use of Historical Marine Climate Data (MARCDAT-III). 2-6 May 
2011, Frascati (Italy). Oral presentation. 

[4] A. Alvera-Azcárate, C. Troupin, A. Barth, and J.-M. Beckers. An EOF-based technique to 
compute merged high resolution sea surface temperature fields. 44th International Liège 
Colloquium on Ocean Dynamics, 7-11 May 2012. Liège (Belgium).

 c) Organisation of the 44th International Liège Colloquium

The 44th edition of the International Liège Colloquium was devoted to the topic “Remote 
sensing of colour, temperature and salinity – new challenges and opportunities”. The 
colloquium was co-organized by K. Ruddick (MUMM) and A. Alvera-Azcárate (Ulg). The 
official webpage is http://modb.oce.ulg.ac.be/?page=colloquium&year=2012

A total of 120 abstracts were submitted and keynote speakers presented the latest 
developments on the fields of remote sensing of colour, temperature and salinity. 

A special issue is under preparation for publication at Remote Sensing of Environment. 
Twenty six manuscripts were submitted and are now in various stages of the revision process.
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 3. Main conclusions of HiSea

Given the results presented in this report and its annexes, the following conclusions can be 
drawn:

– A technique for merging several data sources (satellite and in situ) based on the 
methodology DINEOF has been developed (called DINEOF-OI). The correlation of the 
error covariance matrix can be taken into account, and tests showed the influence of 
atmospheric process on the error variance. The results obtained with DINEOF-OI are 
robust and can have a high temporal and spatial resolution.

– Two approaches were used in this project (two-step approach and embedded 
approach). The error assessment gives similar results for both approaches, although 
the embedded one seems to have more small scale variability. The embedded 
approach is, as of now, slower than the two step approach.

– DINEOF-OI can be easily applied to different variables. During HiSea, sea surface 
temperature and total suspended matter were used and both variables were 
successfully analysed.

– We developed a technique to remove outliers from the satellite data before the 
analyses. This outlier detection exploits spatial coherence of the data, and it helps to 
improve the quality of the final fields. Tests were made on various domains and 
variables.

– TSM forecasts using hydrodynamical model variables like currents and bottom stress 
do not provide meaningful results because of the lack of correlation between the model 
variables and TSM. Other variables should be tried (like model SST) to obtain 
improved forecasts of TSM.
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Abstract A comparison between in situ and satellite
sea surface temperature (SST) is presented for the
Western Mediterranean Sea during 1999. Several in-
ternational databases are used to extract in situ data
(World Ocean Database, MEDAR/Medatlas, Coriolis
Data Center, International Council for the Exploration
of the Sea and International Comprehensive Ocean-
Atmosphere Data Set). The in situ data are classified
into different platforms or sensors (conductivity–
temperature–depth, expendable bathythermographs,
drifters, bottles, and ships), in order to assess the rel-
ative accuracy of these type of data with respect to Ad-
vanced Very High Resolution Radiometer SST satellite
data. It is shown that the results of the error assessment
vary with the sensor type, the depth of the in situ
measurements, and the database used. Ship data are the
most heterogeneous data set, and therefore present the
largest differences with respect to in situ data. A cold
bias is detected in drifter data. The differences between
satellite and in situ data are not normally distributed.
However, several analysis techniques, as merging and
data assimilation, usually require Gaussian-distributed
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This article is part of the Topical Collection
on Multiparametric observation and analysis of the Sea
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errors. The statistics obtained during this study will be
used in future work to merge the in situ and satellite
data sets into one unique estimation of the SST.

Keywords Sea surface temperature ·
Data comparison · Satellite · In situ ·
Mediterranean Sea

1 Introduction

Sea surface temperature (SST) is one of the key vari-
ables for the estimation of the state of the world climate
(Donlon et al. 2009) and is considered one of the es-
sential climate variables by the World Meteorological
Organization. High-quality SST data sets are needed
for various applications, including numerical weather
prediction, ocean forecasting, and climate research.
SST can be measured with different sensors and plat-
forms, but these do not provide a homogeneous estima-
tion of the SST because of the specificity of each sensor
and platform type. Two major groups of platforms can
be described, satellite and in situ SST. These methods
of measurement are very different, hence the SST mea-
sured by each of them can differ in terms of spatial and
temporal coverage, bias, effective depth of measure-
ment, etc. In order to understand the differences and
similarities between the SST measurements made from
in situ platforms and satellite platforms, it is necessary
to carefully assess the error and biases between them
(Castro et al. 2008).

In this work, a comparison between in situ and satel-
lite SST data is undertaken in the Western Mediter-
ranean Sea. The ultimate objective in mind, which is
not part of this work, is to use this error assessment for
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an optimal merging of these two data sources. Devel-
opments of new approaches for merging satellite and
in situ SST are needed (Donlon et al. 2009), for which
we need to take into account the specificities of each
type of measure and the differences and biases between
them. The results obtained through this exercise can be
beneficial for other applications, as the improvement of
platform and sensor design, the detection of drifts and
biases in particular platforms, etc.

Several databases that compile large amounts of in
situ data are available today. Each of these databases
provides interesting data sets at the global and local
scale. For some regional applications, the use of global
databases (such as World Ocean Database, (WOD) or
the International Comprehensive Ocean-Atmosphere
Data Set, (ICOADS)) can turn out to be incomplete, so
the use of more local or specialized databases becomes
necessary. It is not yet well established how each of
these databases are constructed, and quality control is
certainly not homogenized among them. Therefore, in
any work aiming to use data combined from different
databases, a comparison between them becomes neces-
sary. Moreover, each type of in situ sensor has specific
errors (e.g., Emery et al. 2001a; Kent et al. 2010), there-
fore in the error assessment of this work, the different
in situ sensors used will be compared with the satellite
data separately.

There are several works which have undertaken
the task of comparing SST data sources in order to
obtain a better understanding of the differences and
biases between them. For example, Kent and Challenor
(2006) performed a global assessment of ship data
errors from 1970 to 1997. Emery et al. (2001a) and
Xu and Ignatov (2010) made a validation of global in
situ buoys and ship data with the purpose of satellite
calibration. A local error assessment between in situ
and satellite data was realized by Barton (2007). Castro
et al. (2008) show an error assessment of global infrared
and microwave satellite data for merging purposes.
Also, a large amount of research over the last years has
been devoted to the merging of different SST sources
(e.g., Guan and Kawamura 2004; Reynolds et al. 2007;
Gentemann et al. 2009). All these works emphasize the
difficulty in comparing SST from different platforms
given their specific characteristics. These works also
show, indirectly, that it is not easy to generalize the re-
sults of each of these works to a given zone in the world
ocean, a given set of data, and a given application.

This work is organized as follows: section 2 describes
the different satellite and in situ data sets used in
this work. A description of the basic statistics of these
data is included in section 3. Then an error assessment
between the different data is performed, first by data

type and then by database in section 4. Conclusions are
presented in section 5.

2 Description of data

2.1 In situ data

The domain chosen for this study is the Western
Mediterranean Sea (35.1◦N-44.3◦N; 6◦W-15.6◦W, see
Fig. 1). Temperature data for this domain were down-
loaded from various databases:

• World Ocean Database 2005 (WOD05, Locarnini
et al. (2006), http://www.nodc.noaa.gov/).

• MEDAR/MedAtlas (MEDAR-Group (2002),
http://www.ifremer.fr/medar/).

• Coriolis Data Center (http://www.coriolis.eu.org/).
• International Council for the Exploration of the

Sea (ICES, http://www.ices.dk/).
• International Comprehensive Ocean-Atmosphere

Data Set (ICOADS, http://icoads.noaa.gov/, re-
lease 2.5).

The year 1999 was chosen for this study because
of the large number of in situ data available. In more
recent years less in situ data are available, as these still
have to make their way to the international databases
mentioned above.

Only the measurements taken at a maximum of 5 m
depth are retained. For profile data, only the shallowest
data point above 5 m depth is retained, and only those
data for which the depth is known are kept (some of
the data only indicate they are surface data, with no
mention on the measurement depth). From these data,
duplicates were automatically detected by identifying
data located within a radius of 1/100◦ in both latitude
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and longitude, and that were taken within the same
hour. If these temperature measurements differed by
less than 1/100◦C, they were considered as duplicates,
and the one with the highest precision was retained.
From the 7,731 initial data, a total of 6,636 data are kept
after a basic quality check, that included the check for
duplicates and the elimination of data that deviate more
that ±3 standard deviations from the mean of the in situ
data. Some of the data sets provide quality flags of their
data, however to avoid discrepancies between quality
flags used by the different data sets, none of these were
used. Therefore, all data presented in this work have
undergone the same quality checks, described above.
The average depth of the retained data is 2 m, although
a large part of the data (2,343 measurements, or 35%
of the data) indicate the shallowest measurement as
0 m, with no indication of how close to the surface the
measurement was taken in reality. From these, 1,951
are drifting buoys (i.e., 85% of the 2,343 data), and the
rest are expendable bathythermographs (XBT) (6.6%),
BATHY data (5.9%), and conductivity–temperature–
depth (CTD) (3.4%). The surface drifter data used in
this work are from the Surface Velocity Program, and
have a sensor depth of about 0.2 m (P.-M. Poulain,
personal communication), which can explain that their
depth is referred as 0 m.

Information about the sensor/platform for each mea-
surement is also recorded, with seven categories in
total: (1) CTD data, (2) XBT, (3) floats/drifters, (4)
low-resolution CTD or bottles, and (5) ship data. Also,
(6) BATHY and (7) TESAC sensors are among the
types of sensors found, but as no information about
in which platform these are loaded, we kept them as
separate categories. Finally, a number of them did not
identify the sensor/platform. These unknown data were
not included in this work. The resulting data distrib-
ution is shown in Fig. 1, in which the sensor/platform
type is also specified. Ship data are the most numerous
set, followed by drifters, XBTs and CTDs. The total
number for each sensor is detailed in Table 1, along

Table 1 Number of observations available for this work, average
depth for each of them, and coincident satellite observations

In situ Depth Satellite Satellite
(m) (day time) (night time)

CTD 320 0.86 124 95
XBT 1,043 1.41 287 325
Bottle 260 1.96 73 64
Float/drifter 1,994 0.06 737 729
Bathy 141 0.02 46 60
Tesac 13 0 5 0
Ship 2,865 4 969 1,008
Total 6,636 2,241 2,281

with the average depth for each of them. Although in
general the study zone is well sampled when taking into
account all types of measurements, individual sensor
distribution is very heterogeneous, specially CTDs, bot-
tles and drifters, which may introduce spatial biases.

All databases used in this work contain data from
several sensors and platforms. ICOADS is the only one
that provides ship data. Other type of data are also
available at ICOADS, although we decided to keep
only the ship data as it appeared that the sensor type
of a large amount of these additional data did not have
been correctly identified. For example, there were data
classified as moored buoys that, given their spatial and
temporal distribution, were more likely XBT data or
ship data. From the ship data, 78% of the SST has been
recorded at the engine room intake, 11% at the hull
contact sensor, 10% of measurements were taking using
a bucket, and there was also a small percentage (1%)
with an unknown method of measurement.

2.2 Satellite data

Advanced Very High Resolution Radiometer
(AVHRR) SST data on board the NOAA Polar
Orbiting Environmental Satellite series for 1999
were downloaded from the NASA Jet Propulsion
Laboratory Physical Oceanography Distributed Active
Archive Center (PODAAC, http://podaac.jpl.nasa.gov).
The horizontal resolution is about 5 km and both day-
time and night-time passages were obtained. Infrared
radiometers measure the top 10 μm of the sea surface
(Robinson 2004), although they are calibrated using
bulk temperature from buoys in oceans around the
world (Emery et al. 2001b; Robinson 2004). However,
it is unclear if the Mediterranean Sea is well covered
by these calibration measures (Emery et al. 2001a)
for a given year, so the actual depth represented by
the satellite SST in the Mediterranean Sea is not well
known.

A Data Interpolation Empirical Orthogonal Func-
tions (DINEOF, Beckers and Rixen (2003); Alvera-
Azcárate et al. (2005)) analysis of the data was realized
to the AVHRR data to identify and remove outliers
from the original data set, following Alvera-Azcárate
et al. (2011), which proposes an improvement from
the methodology used in Sirjacobs et al. (2011). Out-
liers are defined as data that present anomalous values
with respect to the surrounding pixels. Examples of
phenomena giving rise to the presence of outliers are
cloud edges, haze areas, contrails, or cloud shadows.
Pixels for which the analysis–observation difference
(the residuals) are larger than the statistically expected
misfit calculated during the analysis are identified as

http://podaac.jpl.nasa.gov
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suspect. Two additional tests are realized, one checking
the deviation of each pixel from a local median, and
another verifying the proximity of each pixel to a cloud.
The outliers are identified by combining the results
from these three tests. A total of 0.12% and 0.15% of
the data were removed from the day-time and night-
time data sets, respectively. DINEOF is a technique to
reconstruct missing data using an EOF basis, although
at this stage only the outlier removal was performed. In
the rest of the paper, the original (cloudy but outlier-
free) AVHRR data are used.

To extract the satellite data at the in situ positions,
a linear interpolation has been realized. If the satellite
data were missing at the in situ location, then the
nearest satellite pixel was chosen. In the presence of
clouds it is common that the nearest pixel is also cloudy,
so at the end, from the 6,636 in situ data available, a
total of 2,241 day-time satellite data and 2,281 night-
time data were present. The hour of the day at which
the in situ data were taken was not considered for the
interpolation, so both day-time and night-time satellite
data are compared with the same set of in situ data,
with no consideration of the hour on which the data
were taken. The rationale behind this is that normally
all available in situ data are used to create daily merged
satellite/in situ maps, otherwise the number of in situ
data would be too small. Also, these merged fields aim
to represent the daily average SST.

3 Data statistics

The temporal distribution of the in situ and satellite
data was examined. Figure 2 shows the number of data
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taken in each month of 1999. There are about 300–400
in situ observations per month, except for September,
October and November, during which more than 800
measurements were made per month. The number of
satellite data interpolated at the in situ locations is
much smaller, due principally to the presence of clouds
in this data set. As a result, there are about 34% of in
situ data that can be compared with day-time or night-
time satellite data. The distribution through the hours
of the day (Fig. 3) of the in situ data is homogeneous,
with only a slightly higher percentage of data taken
during day-time hours (54.56%) compared with night-
time hours (45.44%). The comparison with satellite
data will therefore not be biased by inhomogeneous
data distribution. There are specific times of the day
with a very high number of data. These have been
identified as ship data. Presumably, a high number of
ships have an automated procedure for the recording
of surface temperature data, and it is possible that this
procedure is more often established at precise hours
four times a day.
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The monthly average temperature for the in situ
and satellite data (interpolated at the in situ data loca-
tions) is shown in Fig. 4. Both day-time and night-time
satellite data reproduce closely the annual tempera-
ture cycle as described by the in situ data, although
day-time satellite temperatures present an anomalously
high temperature in August. Both day-time and night-
time satellite data sets are about 1◦C colder than in situ
data in March.

Figure 5 shows the temperature distribution of the in
situ and satellite data. The distribution for both types
of data presents two peaks, a small one at about 14◦C
and a larger one at about 20◦C to 25◦C. In order to
assess the effect on the heterogeneous spatio-temporal
distribution of the in situ measurements, a histogram
of the full day-time satellite SST data set is included
as well (the distribution of night-time satellite SST is
similar to day-time satellite SST). The full satellite data
set distribution presents two peaks as well, although in
this case the cold peak is much larger than the warm
peak. The warm peak in the in situ data might be due
to the higher number of these data being collected
from September to November, which as seen on Fig. 4
have an average value of about 20◦C to 22◦C. Fewer
in situ data are collected during the winter months,
which is probably the reason why the cold peak is less
pronounced than the warm peak.

In order to establish the effect of the presence
of clouds in the satellite data distribution, we have
calculated the distribution for the cloud-free SST data
obtained by applying DINEOF (Beckers and Rixen
2003; Alvera-Azcárate et al. 2005) to the data set
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used in this work. The temperature distribution of a
pentad AVHRR climatology (available at http://data.
nodc.noaa.gov/pathfinder/CoralAtlas/PathfinderSST_
Climatologies/5day/) has been calculated as well. Both
of these data sets present a distribution similar to the
cloudy data set in Fig. 5 (not shown), which gives us
confidence in that it represents correctly the Western
Mediterranean SST distribution. Given these results,
we can confirm that the different spatial and temporal
distributions of in situ and satellite data are causing the
differences observed in the temperature distributions
of Fig. 5.

The in situ data distribution has been also rep-
resented separately for each season (Fig. 6): the
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contribution of winter data (season 1, January to
March) and spring data (season 2, April to June) to
the cold peak becomes apparent in this figure, while
the warm peak in the distribution of in situ data is due,
as thought, to the high number of data taken in late
summer and fall. The distribution of the satellite data
interpolated to the in situ positions is very similar to
the distribution of in situ data for each season, in terms
of position and relative size of peaks and minimum and
maximum values.

The temperature distribution for each sensor type,
and their distribution in time (Figs. 7 and 8, respec-
tively) add some information on the in situ data dis-
tribution: the warm peak is mainly due to drifter and
XBT data, both data sets mostly taken from September
to December. The cold winter peak consists mainly
of ship, CTD and to a lesser extent, bottle data. Ship
data distribution is quite homogeneous during the year
(Fig. 8), therefore the histogram for this type of data
(Fig. 7) is the most similar to the complete distribution
of satellite data.

The average temperature for each depth considered
(from 0 to 5-m depth) was calculated using all in situ
data. In order to verify our approach of using all in
situ data when comparing with satellite data, we divided
the in situ data into day-time and night-time data, using
the day-night distribution used in Fig. 3. The results are
presented in Fig. 9, where the average temperature for
day and night satellite data (interpolated to the in situ
positions) is included as well. It can be seen that, for
data up to 3 m depth, the difference between in situ data
and satellite data is larger that any differences induced
by the time of the day at which the data are taken.
This validates the approach of using all in situ data
(day and night time) in our subsequent comparisons.
For data at 4 and 5 m depth, it is less straightforward to
make this assertion. Also, it appears that in situ data at
1–2 m depth are the closest to the satellite estimate,
which indicates that the satellite data are effectively

Fig. 9 Left panel, average
temperature with depth for
the in situ data, divided in
night-time and day-time data.
The horizontal bars represent
the standard error of the
mean. The average
temperature for day and night
satellite data (interpolated to
the in situ positions) is also
included. Note that the depth
of the night and day satellite
data is different from 0 m
only to improve their
readability. Right panel,
number of data for each
sensor category at each depth
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representing the bulk temperature of the Mediter-
ranean Sea for this particular data set. The temperature
minimum observed at 3 m depth is mostly caused by
ship data. These ship data are taken during all months
in 1999 and homogeneously through all the Western
Mediterranean Sea, so it is unlikely that these data
come from a single mis-calibrated sensor. It may be
possible that there is a bias inherent to a specific ship
temperature sensor mounted at 3 m depth, or induced
by the architecture of a specific type of ship. The
identification of the particular type of ships carrying
a temperature sensor at 3 m depth is however beyond
the scope of this work. These data should probably be
removed from the merging analysis.

4 Comparison between in situ and satellite data

As stated previously, the ultimate objective in mind
for this work, although not part of it, is to use the
error assessment for an optimal merging of the satellite
and in situ data. Given the small number of in situ
observations compared with satellite observations, the
impact of the in situ data can be very limited in the
final merged product. Because of that, in this section
we compare all available in situ data to either the
night-time or day-time satellite data. The error statistics
obtained in this section will determine if using all in situ
data (regardless of the hour of the day at which they are
taken) to be merged with either night-time or day-time
satellite data is a valid approach. A summary of the
error statistics between in situ and satellite data can be
found in Table 2. In general, both day-time and night-
time satellite data present very similar RMS error and
correlation, so a more detailed study is needed, dividing
the in situ data by sensor type and by data set.

4.1 Error by sensor type

Several error measures (bias, root-mean squared
(RMS) error, correlation and standard deviation of the
different data sets) are used to assess the differences
between in situ and satellite data. The last three mea-

Table 2 Errors between in situ data and AVHRR satellite data

Bias (◦C) RMS (◦C) Correlation Anomaly
correlation

Day time 0.16 1.1 0.96 0.7
Night time −0.12 1.2 0.95 0.7

Day time and night time refer to satellite time passage, but all in
situ data are compared with each of these data sets

sures are nicely condensed into the Taylor diagram
(Taylor 2001), which is presented in Fig. 10 for the
comparison between day-time satellite and in situ data,
and in Fig. 11 for the comparison between night-time
satellite and in situ data. For each of these comparisons,
the data have been grouped into months (Figs. 10a
and 11a), and into sensor-type (Figs. 10b and 11b).
In this last case, the average value for each month
is previously subtracted from the data to remove the
annual cycle. Note that the satellite data are normalized
by the standard deviation of the in situ data. In situ data
are positioned in the x-axis with a standard deviation
of 1 and the error of the other data being compared
is established as the linear distance to this point (cen-
tered RMS), the angle to the x-axis (correlation) and
distance to the origin (standard deviation, where data

Fig. 10 Taylor diagram of the comparison between day-time
satellite with in situ data for a each month and b each sensor.
Gray isolines represent the normalized and centered RMS error
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Fig. 11 Taylor diagram of the comparison between night-time
satellite with in situ data for a each month and b each sensor.
Gray isolines represent the normalized and centered RMS error

with a standard deviation lower/higher than one have
a standard deviation lower/higher than the reference
data set).

For both night and day satellite data, spring and
summer months present the highest RMS errors and
lowest correlations. There is no apparent difference
between night-time and day-time satellite data, which
would be indicated by a higher clustering of one of
them around the reference point (the in situ data). If
the Taylor diagrams are repeated without the ship data
(figures not shown), then it becomes clear that night-
time data are closer to the in situ data than day-time
satellite data. It appears that the ship data introduce a
higher variability in the comparisons. When looking at
the error for each type of sensor, the comparison with
night-time satellite data yields the best results, with

ship data the platform with the worst performance, as
already mentioned above. One of the best comparisons
is obtained between bottle data and night-time satellite
data. In the comparison with day-time satellite data,
bottle, CTD and ship data present the highest errors.
Note that the bias is not included in Taylor diagrams.
The fact that night-time satellite data compares better
to in situ data than day-time satellite data reinforces
the practice of relating the in situ SST measurements to
night-time satellite SST estimates, to avoid the problem
of diurnal warming.

In order to complete the information included in
Figs. 10 and 11, Table 3 contains the bias and centered
RMS error (i.e., the RMS error without the contribu-
tion of the bias) of the satellite data respect to in situ
data, and the standard deviation of both satellite and in
situ data, divided again by sensor type. The highest bias
is found in the comparison with ship data, with night-
time satellite data half a degree colder than in situ data.
The comparison with drifters also yields a high bias,
for both night-time and day-time satellite data, and in
this case the satellite data are warmer than the drifter
data. The sign of the bias cannot be explained in either
case by the average depth at which these measurements
are taken (Table 1), because ship data are the deepest
(4 m depth in average) and drifter data are one of
the shallowest (0.06 m depth in average). Our results
agree with other works that account for a cold bias
in drifter data respect to ship data (e.g., Emery et al.
2001a; Ingleby 2010), and a warm bias in ship data
(e.g., Kent et al. 1993, 2010), more specifically in engine
room intake measurements. Given that the ship data
set we are using consists mostly of engine room intake
measurements (78.5%), the observed warm bias must
be mostly due to this effect. The centered RMS error
is the highest when comparing satellite data with ship
data, CTD data, and BATHY data.

The error assessment mentioned above compares
satellite and in situ data only at those positions were
satellite data is available. In other words, when clouds
are present the error between in situ and satellite data
can obviously not be calculated. Any error measure
concerning infrared satellite data will result in a “clear-
sky” estimation. This explains the apparent contra-
diction between, for example, the warm bias of ship
data presented in Table 3 and the average temperature
(colder than satellite data) of ship data in Fig. 9. In
Fig. 9, all ship data are used to calculate the average
value, whereas in Table 3 only ship data for which
there are matching satellite observations are used. Con-
sidering that the surface of the sea might be warmer
under clear sky conditions (because of the increased
solar radiation reaching the surface of the sea), it is



Ocean Dynamics (2011) 61:767–778 775

Table 3 Errors between in
situ data and AVHRR
satellite data, for each sensor
type

Day time and night time refer
to satellite time passage, but
all in situ data are compared
with each of these data sets

Bias(◦C) Centered RMS(◦C) σ satellite (◦C) σ in situ(◦C)

CTD Day time 0.42 0.75 4.33 4.33
Night time −0.1 0.61 4.6

XBT Day time −0.0 0.69 3.43 3.37
Night time −0.15 0.66 3.63

Bottle Day time 0.27 0.82 4.47 4.18
Night time −0.05 0.51 4.54

Drifter Day time 0.48 0.52 2.19 2.43
Night time 0.42 0.68 2.47

Bathy Day time −0.18 0.68 4.0 4.25
Night time −0.33 0.89 3.85

Tesac Day time −0.27 0.12 0.13 0.47
Night time – – –

Ship Day time −0.1 1.4 4.5 4
Night time −0.5 1.5 4.4

therefore expected that the in situ data average is
warmer when we consider only those points where
there are no clouds.

The particular contribution of each sensor/platform
type to the overall bias is presented as an histogram
in Fig. 12, again divided by sensor type. A peak is
found at about −4◦C caused by ship data, both for
the day-time and night-time satellite data sets. This
appears to indicate an erroneous set of ship data with
values much warmer than satellite data, rather than an
wrongly detected cold zone in the satellite data set (for
example an undetected cloud), which will likely appear
at more than one sensor type. Further investigation on
the origin of this peak in the histogram reveals that
these are data taken consecutively from the 10th to
the 30th March 1999 in the Gulf of Lions area, which

Fig. 12 Histogram of the difference between satellite and in situ
data, for a day-time satellite data and b night-time satellite data.
Negative (positive) values represent a cold (warm) bias in the
satellite data with respect to the in situ data

indicates that these data may come from a single ship.
The difference of about 1◦C between satellite and in
situ data during March (Fig. 4) is explained by the
presence of these ship data. The histogram in Fig. 12
also shows the positive bias of satellite data respect to
drifter data, and the warm bias of night-time satellite
data respect to CTDs.

Visually, some of the distributions appear to be
skewed. In order to test if the distributions can
be described as Gaussian, an Anderson–Darling test
(Anderson and Darling 1952) has been applied. For
all data types, together the test concluded that with a
confidence of 99%, the difference distribution is not
normal for both the day-time and night-time cases.
Applying the test sensor by sensor, all sensors present a
non-normal distribution at the 99% level of confidence,
except BATHY for day-time data and bottles and
drifters for night-time data, for which the hypothesis of
non-normality cannot be rejected. The non-normality
of the data difference distributions has important con-
sequences for several analysis techniques, as in data
assimilation and the merging of the satellite and in situ
data sets.

4.2 Error by database

A last test is performed to assess the quality of the
in situ data organized by database. The results of this
assessment are presented in Fig. 13 and in Table 4.
ICOADS data are composed solely of ship data, and
the rest of the databases provided data from all the
other platforms except ship data. This makes difficult
the comparison between ICOADS and the rest of the
databases. As already discussed in the previous sub-
section, ship data from ICOADS presents the highest
RMS error and biases, which is reflected in Fig. 13
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Fig. 13 Taylor diagram presenting the error between in situ data
(organized by database) and satellite data (used as reference).
Top panel, day-time satellite data are used. Bottom panel, night-
time satellite data are used. The annual cycle has been subtracted
before the calculation of the errors. Gray isolines represent the
normalized and centered RMS error

and Table 4. ICES data follow in the Taylor diagram.
There is little difference in the quality of each database
when comparing with day-time or night-time satellite

data. Apart from ICOADS, the databases WOD and
Coriolis present the highest bias (Table 4), with satellite
colder than in situ data for WOD and warmer than in
situ data for Coriolis. In general, all presented data-
bases have very similar correlation with satellite data,
although when the annual cycle is removed, ICOADS
data and ICES data perform poorly in terms of
correlation.

5 Conclusions

A comparison between in situ and satellite sea sur-
face temperature (SST) has been realized in the West-
ern Mediterranean Sea for 1999. Five international
databases have been used to extract in situ data for
the desired period and zone: World Ocean Database
(WOD), MEDAR/Medatlas, Coriolis, International
Council for the Exploration of the Sea (ICES) and In-
ternational Comprehensive Ocean-Atmosphere Data
Set (ICOADS). The in situ data have been classified
into different platforms or sensors, in order to compare
the relative accuracy of these type of data respect to the
satellite data. The statistics obtained during this study
will be used in future work for merging purposes.

Ship data, from the ICOADS database, are the most
numerous, and as such they are a valuable source of
data. However, the error assessment between these
data and satellite data shows a large bias and RMS
error. A series of suspect data were identified with a
large bias (more than 3◦C warmer than satellite data)
and that presumably came from a single ship as they
were localized in time and space. One must bear in
mind that the ships collecting surface temperature data
are very heterogeneous in size, and therefore the re-
sulting measurements are very heterogeneous as well.
In addition, measurements from ships (and other plat-
forms in general) are not made with the purpose of
complementing satellite data, therefore they do not
necessarily represent the same temperature.

Table 4 Errors between in
situ data and AVHRR
satellite data, for each data
base

Day time and night time refer
to satellite time passage, but
all in situ data are compared
with each of these data sets

Bias(◦C) Centered RMS (◦C) Correlation Anomaly corr.

ICOADS Day time 0.05 1.43 0.95 0.53
Night time 0.5 1.5 0.94 0.51

ICES Day time −0.36 0.72 0.99 0.64
Night time 0 0.48 0.99 0.56

Coriolis Day time 0.11 0.64 0.98 0.86
Night time 0.24 0.66 0.98 0.81

Medatlas Day time −0.01 0.68 0.98 0.81
Night time 0.15 0.56 0.99 0.74

WOD Day time −0.39 0.62 0.98 0.84
Night time −0.25 0.73 0.97 0.82
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Other types of data performed more homoge-
neously, with RMS errors of 0.6◦C to 0.9◦C and small
biases. The largest bias was detected for drifter data,
which was in average 0.48◦C and 0.42◦C colder than
day-time and night-time satellite data, respectively.
This cold bias in drifter data is maybe unexpected given
that the drifters average depth was of 0.06 m, one of
the shallowest among the platforms considered in this
work. The fact that satellite data are calibrated using
in situ buoys measuring bulk temperatures can be the
reason for this bias. If a given sensor is directly exposed
to the air, for example during calm sea conditions,
this might induce as well a cold bias in the drifters
measurements. The fact that most of the drifters were
released during fall in 1999, a period during which there
can have been a cooling of the air in the Gulf of Lions
region, reinforces this possibility. If the exposure to
the air is responsible for the cold bias during fall, then
the opposite should be verified too, i.e., that drifters
deployed during summer and under calm sea conditions
will present a warm bias. This cannot be verified in this
work, as there were no drifter data deployed during
summer. The smallest bias between satellite data and in
situ data was observed at 1–2 m depth, which confirms
that the satellite are representing the bulk temperature
of the Mediterranean Sea, at least for this particular
data set.

The satellite-in situ SST difference distribution is
generally not normal, as shown by an Anderson–
Darling test at the 99% level of confidence. This result
is obtained when using all in situ data types and for
individual sensor types. Only the difference distribution
between satellite and BATHY, bottle and drifter data
cannot be considered non-normal using the mentioned
test. The non-normality of the data difference distrib-
utions has important consequences for several analysis
techniques, as in data assimilation and the merging of
the satellite and in situ data sets. This factor therefore
needs to be taken into account in future work.

Apart from the error assessment by data type, the
average error for each database was as well calcu-
lated. ICOADS, containing only ship data, presents the
highest errors. The rest of the databases have similar
RMS errors among them, but in terms of bias, WOD
and ICES presented the highest deviations respect to
satellite data.

The comparison of satellite infrared data with in
situ data is limited by the presence of clouds in the
atmosphere, which prevents the infrared radiation from
the sea surface to reach the satellite. The error mea-
sures presented in this work reflect therefore clear-
sky conditions. The presence or absence of clouds
influences the sea surface temperature. In the absence

of clouds, the solar radiation reaching the surface
of the sea during the day increases. The absence of
clouds affects also the net long-wave radiation budget
at the ocean surface (the amount of long-wave radiation
reflected back to the ocean is reduced). This may spe-
cially affect the bias between in situ and satellite data,
as well as other error measures.

The results obtained in this work emphasize that
the differences between in situ and satellite SST data
can be affected by various factors (database, sensor
or platform type, specific bias at a particular platform,
etc). A careful study of these differences is needed prior
to any work aiming to use these sources of data in a
joint manner.
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Satellite data sets often contain outliers (i.e., anomalous values with respect to the surrounding pixels), mostly
due to undetected clouds and rain or to atmospheric and land contamination. Amethodology to detect outliers
in satellite data sets is presented. The approach uses a truncated Empirical Orthogonal Function (EOF) basis.
The information rejected by this EOF basis is used to identify suspect data. A proximity test and a local median
test are also performed, and a weighted sum of these three tests is used to accurately detect outliers in a data
set. Most satellite data undergo automated quality-check analyses. The approach presented exploits the spa-
tial coherence of the geophysical fields, therefore detecting outliers that would otherwise pass such checks.
The methodology is applied to infrared sea surface temperature (SST), microwave SST and chlorophyll-a con-
centration data over different domains, to show the applicability of the technique to a range of variables and
temporal and spatial scales. A series of sensitivity tests and validation with independent data are also
conducted.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sea surface temperature (SST) data sets undergo a series of
quality-check analyses aimed at removing data contaminated with
aerosols, clouds, rain, dust, etc. Most quality-check procedures act
on a pixel-by-pixel basis (e.g., Esaias et al., 1998; Kilpatrick et al.,
2001), so the spatial coherence of the data is not adequately
exploited. As a consequence, outliers may remain in the products
made available for research and monitoring purposes (Donlon et al.,
2002; Lazarus et al., 2007; Merchant et al., 2008b). Some tests do ex-
ploit the spatial coherence of the data (e.g., Coakley & Bretherton,
1982), as applied by May et al. (1998), although not all suspect data
may be flagged as bad or removed from the final data set. Stringent
tests need to be applied in order to remove these outliers from the
data set, although there is no consensus on how best to do this. The
presence of these outliers in satellite SST data introduces biases that
make the comparison between different satellite products difficult.
The validation of different satellite data sets is consequently also
made difficult, as is the correction of possible differences between
them. Some applications, such as data assimilation, can also be affect-
ed by the presence of these outliers, which must be removed before
assimilation (e.g., Okamoto & Derber, 2006).

In this study we propose a methodology to detect outliers in satel-
lite data sets that uses Empirical Orthogonal Functions (EOFs) to
highlight suspect data. This EOF basis is calculated by means of
DINEOF (Data Interpolating EOFs, Beckers and Rixen (2003), Alvera-
Azcárate et al. (2005)), a technique to reconstruct missing values in
satellite data sets. Along with the EOF basis test, two additional
tests are used to increase the robustness of the detection of outliers:
a proximity test (as most outliers occur at the edges of clouds, land,
rain or the satellite swath) and a local median test.

The study is organized as follows. In Section 2, the data sets used
for testing and validating the outlier detection technique are pre-
sented. Section 3 describes the methodology used in this study and
this technique is then applied to an infrared SST data set and validated
in Section 4. In order to demonstrate the applicability of the technique
to other variables, an application using microwave SST and one using
chlorophyll-a concentration are presented respectively in Sections 5
and 6. Conclusions are presented in Section 7.

2. Data sets

Advanced Very High Resolution Radiometer (AVHRR) SST fields
produced by the Ocean & Sea Ice Satellite Application Facility (O&SI
SAF) were obtained through the Medspiration website (ftp://ftp.
ifremer.fr/ifremer/medspiration/data/). The domain of study is the
western Mediterranean Sea (see Fig. 1), and the data have been inter-
polated on a ~2×2 km grid. There are two SST estimates per day, but
only daytime data are used in this study, in order to test the robustness
of the outlier detection technique in the presence of diurnal warming
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events (which should not be detected as outliers). Six months of data
are used, from 7 January 2010 to 7 July 2010.

Daily global SST data from the Tropical Rainfall Measuring Mission
(TRMM)Microwave Imager (TMI) from 1 August 2010 to 31 December
2010 are also used, in order to verify the applicability of the methodol-
ogy to outliers due to the presence of rain and to test the methodology
on a global scale. These data have been interpolated on a 0.25×0.25 de-
gree grid, and daytime passes are used, as for the AVHRR data set. The
data were downloaded from ftp://ftp.ssmi.com/.

Another testwas carried out using chlorophyll-a concentration from
the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS), on board the
SeaStar spacecraft (http://oceancolor.gsfc.nasa.gov/). These data are 8-
day composites covering the Caribbean Sea from 1 January 2004 to 31
December 2004, and have a spatial resolution of 0.1 degrees.

For the verification of the results obtained, level 3 MODIS Aqua SST
data at a spatial resolution of 4 km were used in the domain and time
frame of the AVHRR data set. These data were downloaded from
http://oceancolor.gsfc.nasa.gov/. In addition, Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA) data were also used for
the validation of the western Mediterranean Sea data set. These data
are an analysis incorporating SST information from various satellites,
and are available daily with a resolution of about 5 km (Stark et al.,
2007). These data were downloaded through the MyOcean portal
(http://operation.myocean.eu/).

3. Method

3.1. DINEOF description

DINEOF (Data INterpolating Empirical Orthogonal Functions) is a
parameter-free technique based on an iterative EOF decomposition
to calculate missing data in satellite data sets. A temporal and spatial
average is removed from the data, and the missing data are initialised
to zero (i.e., to an unbiased first guess). The first EOF mode is then cal-
culated from this data set, which is used to infer a new estimate for
the missing data. This procedure is repeated until convergence is
obtained for the values given to the missing data with the first EOF
mode. Subsequently, the two leading EOFs are taken and the process
is repeated until convergence; then three EOF modes are used, and so
on. The optimal number of EOFs needed to calculate the values at the
missing locations is determined by cross-validation: a small percent-
age of valid data (typically 1% of the total data) are initially set apart
and flagged as missing. Once convergence is reached for a given num-
ber of EOF modes, a root mean square error is calculated between the
newly obtained estimate and the initial data set. The number of
modes that minimises this error is considered optimal. Note that
not all modes need to be calculated, as one can consider that if the
error increases steadily for 3 consecutive modes, a minimum has
been reached. Error maps can be calculated for the reconstructed
data using an Optimal Interpolation approach (e.g., Daley, 1991) in
which the DINEOF EOF basis is used to construct a covariance field
(Beckers et al., 2006). DINEOF was first described in Beckers and
Rixen (2003), and an adaptation to handle the large data sets typical
of satellite imagery can be found in Alvera-Azcárate et al. (2005).

The EOF basis calculated within DINEOF is based on the mean and
covariance of the original data. The probability distribution of the data
can be completely defined by the mean value of the data and the EOF
basis if the original data are normally distributed. While this is the
case for SST, other variables, however, do not present a Gaussian dis-
tribution (e.g., biological variables such as chlorophyll-a concentra-
tion, or total suspended matter). In these cases, a transformation of
the original data needs to be performed prior to the DINEOF analysis.
A logarithmic transformation can be used, for example, although
other transformations may also be used.

3.2. Outlier detection

Using the truncated EOF basis retained by DINEOF as optimal to re-
construct the missing data, and interpreting the information contained
in the higher-order EOFs that have been discarded as noise, outliers can
be detected within DINEOF as those pixels for which the analysis-
observation difference (the residuals) is larger than the statistically
expected misfit calculated during the analysis. Sirjacobs et al. (2011)
used the ratio between the analysis residuals and the expected standard
deviation of the residuals to identify outliers in a given data set. For a
given time, the normalised residual is computed by:

Oi ¼
Xa
i −Xo

i

Δi
; for Xo

i not missing ð1Þ

where i=1, …,m is the spatial index, Xia is the analysed value, recon-
structed by DINEOF, Xio is the original data set (i.e., before applying
DINEOF, and where some indexes are undefined due to missing data)
and Δi is the expected misfit calculated as:

Δi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
eff− ∑

k¼1;N
E2i;k

r
ð2Þ

where N is the number of EOFs retained by DINEOF for the reconstruc-
tion and k=1,…N. μeff2 is an estimation of the average noise in the orig-
inal field, calculated as the cross-validation error obtained with DINEOF

Fig. 1. Study domain: the western Mediterranean Sea. Top panel: SST (°C) on 4 July
2010. Middle panel: outliers detected. Bottom panel: SST data with outliers removed.
The black square indicates the zone where a detail is shown in Fig. 2.
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(normalised by the spatial correlation length of the data error to ac-
count for the correlation of the error in the data set; see Beckers et al.
(2006) for more details). ∑k=1,NEi,k

2 is the expected error for each
pixel i, calculated as:

E ¼ LpSC ð3Þ

where the columns of Lp (sizem×N) are the spatial EOFs multiplied by
the corresponding singular values, SC (sizeN×N) is a square root factor-
isation (Cholesky factorisation) of C, which is given by:

C ¼ SCS
T
C ¼ μ2

eff LTpLp þ μ2
eff IN

� �−1 ð4Þ

with IN the identitymatrix of sizeN×N. The threshold value to classify a
given pixel as an outlier following Eq. (1) is proposed to be 3 in Sirjacobs
et al. (2011) meaning that for a Gaussian-distributed misfit, 0.3% of the
data would fall into this category. However, if the expected misfit Δ is
not accurately estimated, the detection of outliers using this approach
is not robust. This shortcoming is evenmore important as we are inter-
ested in the extreme values of O.

In order to mitigate this problem, we propose in this study an im-
provement to the outlier classification proposed by Sirjacobs et al.
(2011). The median and the Median Absolute Deviation (MAD) are
used instead of the standard deviation, as statistics based on the me-
dian are more robust to the presence of outliers in the data than sta-
tistics based on the standard deviation (Wilks, 1995). The median of
the outlier index O (obtained with Eq. 1) is calculated for each image:

Om ¼ median Oð Þ ð5Þ

and the MAD between these two quantities is performed:

δ ¼ mad Oð Þ ¼ 1:4826 median O−Omj j ð6Þ

The factor 1.4826 is introduced such that, for a normal distribution,
theMAD is equal to the standard deviation (e.g., Reimann et al., 2008).
An index of the likelihood that a given pixel is an outlier is therefore
given by:

Oeof ¼
O−Om

δ

����
���� ð7Þ

This test examines the spatio-temporal coherence of the data,
penalising those pixels that are inconsistent with the EOF basis. To
strengthen the outlier classification, two additional tests are per-
formed. A proximity test is performed in order to penalise the proxim-
ity to cloud, rain or land pixels, as many outliers in satellite data are
contaminated by these. For a given image, if a pixel is originally classi-
fied as cloud, rain or land, all pixels in its vicinity (typically one pixel,
but this can be modified) are penalised as potential outliers, so that
Oprox=3 for those pixels and Oprox=0 for the rest.

Finally, as a third test, a local median is calculated for each image
over a given window size. The MAD is again calculated for the data
inside a window of a given size:

δmedian ¼ mad Xo� � ð8Þ

and an estimation of outlier pixels can be therefore obtained:

Omedian ¼ Xo−median Xo� �
δmedian

�����
����� ð9Þ

The final classification of a pixel as an outlier ismade by aweighted
sum of the three tests described above:

Ofinal ¼ weofOeof þwproxOprox þwmedianOmedian ð10Þ

where:

wmad þwprox þwmedian ¼ 1 ð11Þ

The weights give the possibility of penalising more heavily the
aspects considered to be more problematic in a given data set.

4. Application to AVHRR data

4.1. EOF basis determination using DINEOF

By applying DINEOF to the six months of AVHRR data described in
Section 2, a total of 15 EOFs were found to be optimal using the cross-
validation technique. These EOFs explain 99.21% of the total variabil-
ity. The remaining 0.79% of variability, filtered out by the EOF basis,
consists mainly of noise, although it may also contain small scale
and transient features that have too weak a signal to be retained in
the first 15 EOFs. Although very limited, some small scale information
might therefore be lost from the initial data set.

4.2. Outlier detection

The outlier detection method was then applied to the AVHRR data
set. Clouds were used as the factor to classify outliers in the proximity
test. Fig. 1 shows an example of the original data on 4 July 2010, along
with the detected outliers (red dots in the middle panel) and the orig-
inal data with the outliers removed. An equal value of 1 / 3 is given to
all three weights described in Section 3, and the size of the window
over which the median is calculated is 20×20 pixels. The threshold
for Ofinal, above which a pixel is considered an outlier, has been set
to 3. Several types of outliers are present in the original data: near
clouds, scattered in cloudless zones and along the coastline. The tech-
nique is able to detect most of these, as can be seen in the middle
panel of Fig. 1. The quality of the SST once the outliers have been re-
moved is improved (bottom panel of Fig. 1).

Note that large zones of very high SST located east of Corsica and
Sardinia islands are not classified as outliers. These zones are affected
by diurnal warming because of the blocking of westerly winds by the
islands mountains (Merchant et al., 2008a). In order to test the im-
pact of the domain size in the classification of these warming events,
a larger domain of the AVHRR data set was used. This larger domain
contains the western Mediterranean Sea and the north-east Atlantic
Ocean, extending over ~3000 km in latitude and ~5200 km in longi-
tude (compared to the ~1200 km by ~2100 km of the domain pre-
sented in Fig. 1), and over the same time period. The EOF basis
retained by DINEOF consists of 11 EOFs, which account for 99.83% of
the total variability. Applying the same criteria to the detection of
outliers as in the example described above, the diurnal warming
events seen in Fig. 1 are not classified as outliers by our technique
(data not shown). Therefore, the outlier detection technique does
not penalise large zones of anomalous data resulting, for example,
from an atmospheric event, and this is true for different domain sizes.

A detail of the western Mediterranean domain is shown in Fig. 2
(see Fig. 1 for location). Together with the original data, the result
of each of the three tests is shown. Also included is the SST without
outliers for two thresholds: 2.5 and 3, as well as the pixels classified
as outliers for these two cases. Pixels that appear in dark red (values
larger than 3) for each test are classified as outliers in this example. In
this example, the Oprox test is the strictest (classifying more pixels as
outliers) so the addition of the Oeof and Omed tests modulates this
classification.

4.3. Validation of the outlier detection technique

In order to verify the accuracy of the method in detecting outlier
data, the Root Mean Square (RMS) difference was calculated between
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the AVHRR SST field and two reference fields: MODIS Aqua SST and
OSTIA SST fields, both for 4 July 2010. Table 1 shows the RMS differ-
ence for various combinations of weights and threshold values,
along with the number of outliers detected with each case. Only the
RMS difference for pixels classified as outliers is presented. For pixels

not classified as outliers, the RMS difference is of about 0.9 °C for the
comparison between AVHRR and MODIS and 1.4 °C for the compari-
son between AVHRR and OSTIA, regardless of the weights and thresh-
old used. This is due to the higher number of data that enter this
computation, making this statistic more robust.

For data classified as outliers, the RMS difference is larger than the
values obtained for non-outlier data in all cases. This shows that the
pixels detected in the AVHRR data are in fact different from the values
in the MODIS and OSTIA SST, and are therefore very likely to be out-
liers. The smallest RMS difference is obtained when only the Oprox

test is applied. This result is to be expected because this test bases its
classification only on the proximity of each pixel to a cloud, regardless
of its value. This test should always be applied as a complement to the
other two.

The classification using an equal weight of 1 / 3 for each test and a
threshold of 3 detects themost suspect data (the RMS difference is the
largest of the table, for both comparisons), with a minimal data loss
(0.7% of the complete data set). Other combinations result in more
data being classified as outliers. The determination of the weights
and threshold to be used is dependent on the data set and the degree
to which one wants to remove outliers. Note that the outlier popula-
tion detected for each combination of weights is different, which re-
sults in very different RMS errors.

An additional test was carried out to test the influence of the me-
dian window size in the detection of outliers. Fig. 3 shows the results
of the median test for median window sizes of 2×2, 10×10, 20×20,
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Fig. 2. SST detail (°C) and outlier tests in the small domain of the western Mediterranean Sea shown in Fig. 1. Panel a: original data; panel b: proximity test; panel c: EOF test; panel
d: local median test; panel e: SST withoutliers removed, applying a threshold of 3; panel f: outliers detected with a threshold of 3; panel g: SST with outliers removed, applying a
threshold of 2.5; panel h: outliers detected with a threshold of 2.5. See text for a detailed description of each sub-test.

Table 1
RMS difference between AVHRR and two reference data sets (MODIS SST and OSTIA
SST) on 4 July 2010. Different weights and thresholds are applied. The number of
data classified as an outlier for each case is included (as the total number and as the
percentage with respect to the whole data set). Only the RMS difference for pixels clas-
sified as outliers is presented.

weof wprox wmed Threshold RMSMODIS

(°C)
RMSOSTIA
(°C)

number of outliers
(%)

1/3 1/3 1/3 3 2.6 3.13 1335 (0.7%)
1/2 1/4 1/4 3 1.35 3.10 1442 (0.75%)
1/4 1/2 1/4 3 1.29 3.12 1259 (0.65%)
1/4 1/4 1/2 3 1.36 3.06 1416 (0.74%)
1 0 0 3 1.32 2.72 3657 (1.9%)
0 0 1 3 1.16 2.72 2063 (1.1%)
0 1 0 – 1.06 1.33 17533 (9%)
1/3 1/3 1/3 2 1.53 2.20 4841 (2.5%)
1/2 1/4 1/4 2 1.31 2.34 5665 (3%)
1/4 1/2 1/4 2 1.23 1.72 7631 (4%)
1/4 1/4 1/2 2 1.28 2.29 4266 (2.2%)
1 0 0 2 1.3 2.11 11571 (6%)
0 0 1 2 1.13 2.13 4791 (2.5%)
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40×40 and 80×80 pixels, together with the original SST to assess the
impact of this parameter. It can be seen that a too small window size
(i.e., 2×2 pixels) does not give robust results, as very few of the sus-
pect cold pixels in the SST are given high values with the median test.
For large median window sizes (40×40 pixels and 80×80 pixels),
some good-quality pixels obtain high scores and are therefore subject
to being classified as outliers when they are not. Moderate median
window sizes of 10×10 and 20×20 pixels give the best results, and
this validates our choice of using a 20×20 pixel window size for the
median test. Moreover, the larger the window size, the longer the
computational time needed to the compute the median test; there-
fore moderate window sizes are preferred.

4.4. Comparison with the Sirjacobs et al. (2011) method

As mentioned in Section 3.2, the EOF test is based on the one pre-
sented in Sirjacobs et al. (2011), although some improvements have
been made to make the approach more restrictive in the classification
of outliers. In order to show the effect of using Eq. (7) instead of
Eq. (1), we carried out an outlier classification test using these two ap-
proaches. The left panel of Fig. 4 shows again the SST detail in the
western Mediterranean Sea as shown by a black square in Fig. 1. The
centre panel of Fig. 4 shows the points classified using the approach
of Sirjacobs et al. (2011), using a threshold of 3 as in previous tests.
The right panel of Fig. 4 shows the result of the EOF test suggested in
this study (i.e., without applying the median or the proximity test),
again classifying as outliers those pixels that exceed the threshold of
3. As can be seen, applying the method proposed in Sirjacobs et al.
(2011) leads to the detection of fewer outliers than with the approach

suggested in this study. Over the whole domain of study, on 4 July
2010, the approach by Sirjacobs et al. (2011) detected a total of 1931
outliers, and the EOF test suggested here detected 3657 outliers. This
example shows that the new approach is better able to detect outliers.

5. Application to microwave SST data

The outlier detection methodology was also applied to the TMI
data described in Section 2. Microwave sensors are able to “see”
through clouds, but not through rain, so the proximity test used the
presence of rain in a given pixel as the condition to flag the pixels in
its vicinity. First, DINEOFwas applied in order to compute the truncat-
ed EOF basis. Twelve EOFs were retained as optimal by DINEOF, which
explain a total of 99.67% of the initial variance. An example of the
missing data reconstruction obtained with DINEOF can be seen in
Fig. 5. Note that most of the missing data in the TMI data set are due
to the gaps between the satellite swaths, which are more pronounced
near the equator. As these are not static, DINEOF can provide an esti-
mation of the SST under these gaps as well as under other gaps caused
mainly by the presence of rain. By using the spatio-temporal informa-
tion contained in the truncated EOF basis, the reconstruction retains
the meso-scale information observed in the original data, in the form
of eddies and meanders.

An example of the detection of outliers is shown in Fig. 6 for the
domain delimited by a black rectangle in Fig. 5. The original data are
shown, together with the results of the individual outlier tests, and
the final SST once the outliers have been removed (two thresholds
for the outlier test, 2.5 and 3, are shown). The size of the window
overwhich themedian test is calculated is 20×20 pixels, as in the pre-
vious example. Note however that given the coarser resolution of the
TMI SST product, the median test acts on a larger scale than for the
AVHRR example. It can be seen that the technique is also capable of
detecting outliers due to rain-contaminated pixels, as these are also
flagged by both the median and the EOF tests. The proximity test
also helps in the classification of the final outliers. The quality of the
resulting SST once the outliers are removed is good for both thresholds
used.

6. Application to chlorophyll-a concentration data

In order to test the outlier detection technique with a variable
other than SST, the Sea-WiFS chlorophyll-a concentration data men-
tioned in Section 2 were used. These data are 8-day composites, and
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Fig. 3. SST detail (°C) and effect of window size in the median test. Windows of 2×2, 10×10, 20×20, 40×40 and 80×80 pixels were used.

SST Old EOF method New EOF method

22

24

26

28

0

0.5

1

0

0.5

1

Fig. 4. Outliers detected using the EOF test as described in Eq. (1) (centre panel) and
outliers detected using the new approach suggested in this study (Eq. 7, right panel).
Note that in the new approach onlythe EOF test is applied, and not the proximity and
median tests. The original SST (°C) is shown in the left panel for reference.
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as such they contain less missing data than daily fields (about 22% of
clouds and othermissing data), and the possibility of outliers is dimin-
ished because of the averaging used in the compositing. The EOF basis
calculated by DINEOF consists of the 9most dominant EOFs, which ex-
plain 92.5% of the total variance. A logarithmic transformation of the
chlorophyll-a data was performed before using DINEOF, because
chlorophyll-a concentration data do not have a Gaussian distribution,
as discussed in Section 3.1. This transformationwas kept for the detec-
tion of outliers. The size of the window over which the median test is
calculated is 20×20 pixels.

Although the presence of outliers is less evident in this data set,
there are instances when some pixels have values very different
from their surroundings, probably due to a persistent cloudy situation
which decreases the amount of data available for compositing. Fig. 7
shows the chlorophyll-a concentration data for the period 9 to 16
January 2004, and, as can be appreciated in the image showing the
southeastern part of the domain (top-right panel of Fig. 7),some data
might be considered as outliers. In particular, some high values are
observed within the high chlorophyll-a concentration plume located
in the middle of the image, and along the coast. Given the composite
nature of the data, a threshold of 3 might be too restrictive and thus
classify as outliers some data that might be correct (see Fig. 7, bottom

left panel). A less restrictive threshold of 6 is in this case appropriate to
detect those suspect data mentioned above. This example shows that
the outlier detection technique is also able to detect outliers that arise
as a result of a compositing strategy.

7. Conclusions

We have presented a technique to detect outliers in satellite data
sets, based on the combination of three tests that exploit the spatial
coherence of the data. The proposed technique was tested using sea
surface temperature (SST) data from an infrared sensor and a micro-
wave sensor, as well as chlorophyll-a concentration data. These exam-
ples showed that the technique can be applied to variables with very
different characteristics.

The combined use of the three proposed tests (EOF basis test, prox-
imity test and local median test), is able to accurately detect outliers in
the data set, as demonstrated by comparing the results with indepen-
dent satellite SST products. Using only one or two of the three tests
might give sub-optimal results. For example, when very few data are
present in the window used for the local median test (because data
are missing due to the presence of clouds, rain, etc.), non-optimal
results might be obtained. Also, using the median test alone might

Fig. 5. TMI SST (°C) missing data reconstruction for 25 September 2010. Top panel: original data. Bottom panel: DINEOF reconstruction.

Fig. 6. SST detail (°C) and outlier tests in the domain shown by a black rectangle in Fig. 5. The original data are shown in the top left panel, and the data without outliers are shown in
the two bottom panels, using two thresholds (2.5 and 3) when combining the individual outlier tests. The individual outlier classifications for each of the tests performed are also
shown.
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penalise too strongly data situated along a strong front. The EOF test
alone might classify as an outlier an anomalous event happening
only once in the analysed time series. The combination of the three
tests can help mitigate these effects.

It has been shown that themethodology presented in this study, as
it is based on a series of spatial coherence tests, only flags data that
stand out as anomalous in relation to their surroundings. Therefore,
large zones of anomalous data resulting from an atmospheric event,
such as diurnal warming events, for example, are generally not pena-
lised by this technique.

The weight given to each of the tests, as well as the threshold over
which a pixel is classified as an outlier, can be adapted to each data set
and to the future applications of the data. This gives the capability to
adjust the sensitivity to different factors. As explained in this study,
additional tests can be implemented, such as a land-proximity test,
which may penalise pixels near to the coastline. Nevertheless, in the
examples shown in this study some coastal outliers had already
been detected by our approach.

The difficulty in detecting outliers in a data set lies in the fact that
there is no unique definition of an outlier. This definition might vary
depending on the specific application, the quality of the data, and
even the expectations of the person using these data. The methodol-
ogy presented in this study allows the adjustment of the degree to
which one classifies a given pixel as an outlier by varying the weights
of the different tests and the final threshold, and the approach can
therefore be adapted to each specific case. For example, the size of
the window used in the median test can be used to influence the
size of the structures being classified as outliers. In general, single
pixels or small zones (a few pixels) are penalized by the proposed
tests, and not coherent structures. One could increase the size of the
window in the median test so that larger structures are more penal-
ized. However, if these structures are recurrent, like the warming
event observed in the example given for the Mediterranean Sea, the
EOF test will not penalize them, so they will not be classified as
outliers.

The methodology can be applied on a global scale, although the
computing resources needed would be high (particularly if working
with high-resolution data sets). However, an alternative approach
for global applications could be to calculate the EOF basis on a sub-
basin scale, whichwould allow for a longer time-series for less compu-
tational cost. Such an EOF basis is capable of representing better the
meso-scale processes of the sub-basins, and therefore the detection
of outliers may be more robust using this approach.

The source code of DINEOF, the technique on which the EOF basis
test is based, along with the outlier test detection technique described
in this study, are freely available at http://modb.oce.ulg.ac.be/wiki.
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Annex III

Methodology





1 DINEOF-OI
A technique to merge data sets has been developed during this project. The analysis is based 
on the formalism of optimal interpolation (OI) and the error covariance is expressed using a 
set of spatial EOFs obtained from DINEOF, instead of using an analytical expression, which is 
the  most  common  way  of  describing  the  covariance  matrix  in  OI.  An  EOF-based  error 
covariance represents therefore more realistically the complex spatial variability of the data 
sets. This code has been written as a post-processing step for DINEOF: first a data set is 
analysed using DINEOF and the truncated EOF basis retained by it is used in the second 
step to merge the data set used in DINEOF with another data set.

The spatial EOFs are scaled: 

U s=
1

√n
U Σ

where n is the number of time steps, U are the spatial EOFs and Σ are the singular values.

The analysis step can be described as follows:

xa = xb + P HT (H P HT+ R)-1 (yo- H xb)

where xa is the analysis, xb is the background field, P is the covariance matrix (based on the 
scaled truncated spatial EOF basis),  R is the error covariance of the data,  yo are the data 
being analysed and H is an operator to extract the data at the observations location. The error 
variance of the observations can be specified as a single number or as pixel-by-pixel values.  
Single sensor error estimates (SSES) provided with the satellite data sets can be therefore 
used.  The  error  covariance  matrix  R  can  be  a  diagonal  matrix  (meaning  that  the  error 
covariance of the observations are de-correlated) or it can have non-null off-diagonal terms, 
to  take  into  account  the  correlation  of  the  error  covariance  of  the  observations.  If  no 
estimation of SSES is available, a first guess for the  error variance can be estimated using 
the information rejected by the truncated EOF basis, considering this as a measure of noise in 
the dataset:

μ
2
=

1
mn−M ∑

x ijnot missing

( x ij
2
−xr ,ij

2
)

with m the number of spatial data, M the number of missing data, x the original data and xr the 
data reconstructed with DINEOF. This is a first guess and can be adjusted. Because of the 
high spatial redundancy typical of satellite data, a strong spatial correlation within these data  
is  normally  found.  The error  variance of  the satellite  data  has to  take into  account  this  
redundancy:

μe
2
=rμ2



where:

r=
L2

Δ xΔ y

where L is the correlation length of the observational error and Δx, Δy are the  zonal and 
meridional resolution respectively.

2 Embedded DINEOF-OI
The technique described above was used either as a two-step process (EOFs calculated in 
DINEOF and the OI step preformed afterwards) or as an embedded process: within DINEOF, 
and  at  each  time  the  EOF  is  updated  in  the  iterative  process,  the  merging  with  the 
geostationary data was realised. The merged estimation is then used in the initial dataset to  
perform a new EOF decomposition. The methodological approach is the same. Updating the 
initial data with the merged estimate can allow to obtain a more consistent merged dataset, as 
the merging is done iteratively and not only in one step.

3 Use of a correlated error covariance matrix in DINEOF-OI

To derive an “optimal” analysis it is necessary to know the error covariance of the background 
field (P) and the error covariance of the observations (R). Sophisticated methods are used to 
estimated the error covariance of the background field, but often simple diagonal form is used 
for  R.  Ignoring  the  correlation  of  observations  results  in  giving  too  much  weight  to  the 
observations.  Several approaches avoiding the issue of correlated observations errors have 
been used, such as sub-sampling of the data (not all the data is used), binning i.e. degrading 
the spatial distribution of the data (some spatial information is lost) or inflation of R (pretend 
that the data are less precise because there is some redundancy).

The  theoretical  framework  for  dealing  with  spatially  corrected  errors  is  however  well 
understood. Given the background estimate (xf), the observations (yo) and their relationship 
as expressed in the observation operator (H)

xa=x f +PH(HPHT
+R)

−1
(yo−Hx f )

The error covariance (P) is expressed in terms of EOFs (columns of the matrix S):

P=SST

One can avoid the formulation of the error covariance by performing the following eigenvector 
decomposition:
(HS)T R−1

(HS)T=UΛUT

Using the  Sherman–Morrison–Woodbury formula, the analyses can be efficiently computed 
by



xa=x f +SU (I+Λ)
−1UT (HS )

TR−1
(yo−Hx f )

Even for a relatively small domain such as the Western Mediterranean Sea and relatively low 
resolution sensor,  the size of the matrix  R can be quite  large and the computation of its 
inverse can be challenging. For the present case, the matrix R has the size approximately 10 
000 x 10 000 for Seviri data.

The error covariance of the observation R is decomposed in variance (D) and correlation (C):

R=DCD

The single sensor error statistics is used to specify the error variance  of the SST. Error is 
assumed to come from a spatially correlated and non-spatially correlated component:

C=(1−α)I+αC '
The spatially correlated error has the form:

Cij=exp(−∣ri−r j∣
2
/L2)

where ∣r i−r j∣ is the distance between points i and j. The spatial structure of the observation 
error covariance is thus parameterized by the fraction of correlated error (α) and correlation 
length (L).





Annex IV

Application of DINEOF-OI to various SST 
datasets





1 Application of the merging technique to satellite + in situ data 
sets in the western Mediterranean Sea

The in situ and satellite data described in Appendix I were used for a first test of the merging 
technique.  Only  night-time  satellite  data  were  used  as  following  the  satellite  -  in  situ 
comparison, this data set was nearer to in situ observations. 

One year of AVHRR data was used (1999), which contained 64 % of missing data due mainly  
to the presence of clouds in the atmosphere. A first DINEOF analysis was realised on the SST 
anomalies (the seasonal  cycle  removed is  presented in  figure  3),  which found by cross-
validation 14 EOF modes as the optimal set for the reconstruction of missing data. These  
EOFs  explained  95.62% of  the  total  variance  and  a  cross-validation  error  of  0.4°C was 
obtained for the reconstruction.

The first three temporal and spatial EOFs obtained from the DINEOF analysis are shown in 
figures 4, 5 and 6. These EOFs represent the variability of the western Mediterranean SST 
respect to the seasonal cycle of figure 3, and together they explain about 80% of the total 

Figure 1: seasonal cycle of SST removed prior to the DINEOF analysis.



variability. There are clear zones of high variability, like the Alboran Sea and the Gulf of Lions.  
The temporal modes are highly variable and it is difficult to infer a temporal scale in these 
EOFs, although one can see a 4 to 6 month variability on the first and second modes. 

Figure 3:  Second spatial (left) and temporal (right) EOF mode obtained with DINEOF for the AVHRR data set. The 
percentage of variability explained by this mode is shown in the left panel. The units of the temporal mode x-axis are 
days since 1st January 1999.

Figure 2: First spatial (left) and temporal (right) EOF mode obtained with DINEOF for the AVHRR data set. The 
percentage of variability explained by this mode is shown in the left panel. The units of the temporal mode x-axis are 
days since 1st January 1999.



The covariance function used in the OI step is based on these EOFs (the three shown in  
figures 4 to 6 and 11 additional EOFs not shown here). Figures 7 and 8 show two examples of  
the spatial covariance of a given point (in particular, one in the Balearic Sea and another in  
the Gulf of Lions) with respect to the rest of sea points in the western Mediterranean Sea. The 
variance of the first EOF was reduced to produce a more localized response.

Figure 5: covariance between a point in the Balearic Sea (magenta dot) and the rest of the domain.

Figure 4: Third spatial (left) and temporal (right) EOF mode obtained with DINEOF for the AVHRR data set. The 
percentage of variability explained by this mode is shown in the left panel. The units of the temporal mode x-axis are 
days since 1st January 1999.



We must stress the fact that the covariance explained with the EOF basis is non-parametric, 
i.e. it is based on the data alone. This explains the richness of the structures that can be seen 
in the covariance fields. There are however also some shortcomings to the use of a truncated 
EOF basis: spurious long-distance correlations are observed, specially in figure 7, and this  
must be probably due to the limited number of EOFs used in the analysis (we recall we used 
14 EOFs). 

An OI step is therefore done using the satellite data and the in situ data, with the EOF basis 
as covariance function. Figure 9 shows an example of the initial AVHRR data and the result 
after merging them with available in situ data for the 16 October 1999. The error for the 
different in situ data are those given in table 1.

Figure 6: covariance between a point in the Gulf of Lions (magenta dot) and the rest of the domain.

Figure 7: (left) Initial SST from AVHRR; (right) DINEOF-OI merged SST using satellite and in situ



In order to validate the results obtained with the DINEOF-OI approach, 10% of the in situ  
data, at random locations, was taken aside for cross-validation. It was seen that using the 
DINEOF-OI approach improved the results over a DINEOF step alone (using only satellite 
data). The errors obtained through the cross-validation are summarised in table 2.

Table 1: RMS error between the analysis field obtained by DINEOF or DINEOF-OI and all in situ data and 
a cross validation subset  of  in  situ  data.  The highlighted fields  show the  errors  obtained with  the  
DINEOF approach (only satellite data) and the DINEOF-OI approach taking aside the cross-validation set.

All  in  situ  data 
(°C)

10%  of  cross-validation  data 
(°C)

DINEOF 1.12 1.07

DINEOF-OI  with  all  in  situ 
data

1.08 1.04

DINEOF-OI without CV data 1.08 1.06

2 Application  of  DINEOF-OI  to  polar-orbiting  +  geostationary 
satellite SST data: two-step approach

The next step was to apply DINEOF-OI to a combination of polar-orbiting and geostationary 
data, with the aim of calculating a merged data set with the spatial resolution of the polar-
orbiting satellite data and the temporal resolution of the geostationary satellite data.

For the polar-orbiting satellite, the AVHRR NAR18 data were used, with a spatial resolution 
of~2km and two daily passages (at 2:00 and 12:00). For the geostationary satellite, SEVIRI 
data were used, with a spatial resolution of ~10km spatial resolution and 8 daily fields (3-
hourly). Different periods were used, and here the results for 1 January to 31 Mars 2009 are  
presented. In order to correct for the bias between the AVHRR NAR18 data and the SEVIRI 
data, 0.32ºC were removed from the latter.

To compare the results,  OSTIA SST data were downloaded for the same period. As it  is  
shown in figures 8 and 9, the correspondence between the OSTIA data and the DINEOF-OI 
merged data is very good, with the OSTIA data smoother than the DINEOF-OI data. In figure 
9, for example, the warm signal of the Northern Current along the French coast is better  
represented in the DINEOF-OI field. 

The root mean square error between OSTIA and DINEOF-OI is 0.39ºC, with a bias of -0.09ºC  
(DINEOF-OI colder than OSTIA). For the comparison, DINEOF-OI data at 7:30 were used, as 
OSTIA represents  foundation  temperature  free  of  diurnal  warming.  DINEOF-OI  data  are 
however, 3-hourly, so the complete variation of the western Mediterranean SST diurnal cycle 
can be assessed. As an example,  the complete series of SST for the 20 January 2009 is 
shown in Figure 10. A smooth transition between images can be observed, with the warmest  



part in the south of the domain becoming cooler through the day. 

Figure 8: Example of merged SST on 20 January 2009. Top left: initial polar data. Bottom 
left: initial geostationary data. Top right: OSTIA data; Bottom left: DINEOF-OI data (two 
step approach)

Figure 9: Example of merged SST on 19 Mars 2009. Top left: initial polar data. Bottom left: 
initial geostationary data. Top right: OSTIA data; Bottom left: DINEOF-OI data (two-step 
approach)



The merged data were also compared to independent in situ data. The Coriolis database 
(http://www.coriolis.eu.org/)  was  used.  All  available  data  for  2009  were  downloaded, 
consisting of drifting buoys, Argo profilers, moorings, XBTs, CTDs and gliders). We kept for  
the comparison the shallowest measure in case of profiles, and in any case no observations 
below 5 m depth were retained. The RMS between the merged DINEOF-OI data and the in 
situ data is 1.3ºC with a bias of -0.13ºC.

3 Application of DINEOF-OI to polar-orbiting + geostationary 
satellite SST data: embedded approach

The same analyses preformed in section 2 were realised using the embedded DINEOF-OI 
approach, in which the merging step takes place each time the EOF basis is updated within 
DINEOF. The results are very similar, although more small-scale variability can be seen in the 
embedded  approach.  To  illustrate  this  we  show  in  figure  11  the  DINEOF-OI  embedded 
estimation for 20 January 2009, to be compared with figure 8. The large scale features are 
similar, and the difference is as said, in the smaller features that are more abundant in the 
embedded case.

Figure 10: DINEOF-OI 3-hourly reconstruction of western Mediterranean SST for 
20 January 2009. 

http://www.coriolis.eu.org/


Comparisons with  OSTIA and with  the Coriolis  in  situ  data were also performed, and all  
values are summarised in table 2. As can be seen, the two-step approach has a lower RMS 
when comparing to OSTIA and the embedded approach has a lower RMS when comparing 
with the in situ data.

Table 2. Error assessment of the merged dataset, using DINEOF-OI in two steps and the  
embedded DINEOF-OI.

OSTIA Coriolis in situ data

RMS (ºC) Bias (ºC) RMS (ºC) Bias (ºC)

DINEOF-OI (two steps) 0.39 -0.093 1.3 -0.13

DINEOF-OI (embedded) 0.6 0.21 1.12 0.55

A difference between the two approaches is, as of now, the CPU time needed to perform the 
calculations. The embedded approach performs the analysis step iteratively,  therefore the 
total CPU time is more elevated than the two-step approach, where the update is only done 
once.

Figure 11: Example of merged SST on 20 January 2009, using the embedded DINEOF-OI. 
Top left: initial polar data. Bottom left: initial geostationary data. Top right: OSTIA data; 
Bottom left: DINEOF-OI data (embedded approach)



4 Using a spatially correlated error covariance matrix.

Using the  same combination  of  polar-orbiting  and geostationary  datasets  of  the  previous 
section, the use of a spatially correlated error covariance matrix was tested. The EOFs were 
computed based on observations from NAR 18 from 1 January 2009 to 30 June 2009. Data 
used for the reconstruction are from 17 May 2009, which has the lowest cloud cover in data  
set (figure 12).

1% (or 40 %) of observations from AVHRR NAR-18 were removed from the dataset for cross-
validation. The objective of the reconstruction is to determine if assuming spatial correlated 
observations  for  SEVIRI  is  beneficial  by  varying  the  fraction  of  correlated  error  (α)  and 
correlation length L.

The benefit of taking explicitly the spatial correlation of the observation error into account is 
tested using cross-validation: 1% of the NAR 18 data (chosen randomly) are taken out of the 
data set and not used in the analysis. The analysis is first performed with a diagonal R matrix. 
The  RMS error  compared  to  the  cross-validation  data  without  taking  the  correlation  into 
account is 0.587 °C. 

A series of tests were performed with different correlation lengths L and different values for 
the fraction of correlated error  a. The cross-validation error is given in table 3. The minimal 
cross-validation error was found for a correlation length of 20 km and a fraction of correlated  
error of 0.6. The cross-validation error is reduced by a relatively modest 0.01 °C. Visually the 
results  (figure  13)  are  quite  similar.  The difference of  the  reconstruction  reveals  that  the 
differences reach about 0.3° in the Northern Tyrrhenian Sea and in the Western Provençal 
Basin.

Table  3:  Cross-validation  error  taking  aside  1%  of  the  data  for  varying  values  of   the  
correlation length L (in km) and fraction of  fraction of correlated error a.

correlation length
5 10 20 30

0.2 0.584 0.582 0.581 0.581
0.4 0.584 0.579 0.585 0.695
0.6 0.580 0.583 0.576 0.580
0.8 0.674 0.584 0.642 0.655

fraction of 
correlated 

error

SEVIRINAR 18

Figure 12: SST from NAT 18 and SERVIRI for 17 May 2009.



The  percentage  of  cross-validation  points  was  increased  to  40%  to  study  how  the 
reconstruction error behaves under a more typical cloud cover. In fact, with a low percentage 
of cross-validation points,  the removed data are isolated pixels whose information can be 
relatively  easily  recovered  using  the  neighbouring  pixels.  Using  40%  of  cross-validation 
points, the RMS error without taking the correlation into account is 0.603°C. It is interesting to  
note that the optimal cross-validation error is obtained for the same values of the correlation 
length and fraction of correlated error as before. The reduction of the RMS error, 0.02°C, is  
larger than the case the 1% cross-validation points.

Figure 13: Reconstructed SST using NAR 18 and SERVIRI of the 11 May 2009 using diagonal observation error 
covariance R, a non-diagonal R and the difference.

Reconstruction with diagonal R Reconstruction with non-diagonal R

Difference (non-diagonal R – diagonal R)



Table  4:  Cross-validation  error  taking  aside  40% of  the  data  for  varying  values  of   the  
correlation length L (in km) and fraction of correlated error a.

Finally, we performed a series of analyses using larger correlation lengths. 

Table  4:  Cross-validation  error  taking  aside  40% of  the  data  for  varying  values  of   the  
correlation length L (in km) and fraction of correlated error, for longer correlation lengths.

While the results obtained with a correlation length of 20 km are still minimizing the cross-
validation error, we found two additional length scales that are very near the value obtained 
for 20 km: 300 km and 700 km. This may reflect the multiscale nature of the SST errors, and 
suggests that errors are correlated at different scales, which would depend on the source of  
the error (e.g. the longest lengths scales can be due to atmospheric processes).

correlation length

5 10 20 30

0.2 0.598 0.594 0.592 0.592

0.4 0.599 0.589 0.597 1.403

0.6 0.589 0.591 0.581 0.588

0.8 0.688 0.606 1.142 0.676

fraction of 
correlated 

error

Correlation length (km)

50 100 200 300 500 700 1000

Fraction of 
0.2 1.558 1.1459 0.5986 0.5827 0.6014 0.5812 0.6154
0.4 0.6128 0.6065 0.6419 1.0649 0.7915 0.599 0.5925

correlated 0.6 1.1249 0.7125 0.9742 0.8011 0.6967 0.6492 0.6432
error 0.8 0.648 0.614 3.2523 0.8927 3.9199 0.9894 3.5744
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Suspended Matter data





In order to test if DINEOF-OI can also work with other variables and in other domains, ocean 
colour data over the North Sea have been used. A polar-orbiting dataset (from MODIS), with a 
spatial resolution of 2 km, and a geostationary dataset )SEVIRI) with a spatial resolution of 
about 6 km and a temporal resolution of 15 min. The approach used is the same as used 
throughout the project: an EOF basis is calculated for the higher spatial resolution data and 
used as covariance matrix to merge the two data sources.

We worked directly with marine reflectance data, for the period June-July 2008. Sixteen EOFs 
were retained by DINEOF. An error variance of 1 was used for both MODIS and SEVIRI data.

Figure 1: Top panel: initial MODIS marine reflectance data; bottom left: initial SEVIRI 
marine reflectance data; bottom right: reconstruction by DINEOF-OI. Date: 04 July 2008. 
Data have been transformed to Total Suspended Matter (g/m3) and are displayed in 
logarithmic scale.



The merged dataset has the temporal resolution of the SEVIRI dataset (i.e. 15 min). The 
quality of the results was assessed using in situ data from the West Gabbard and Warp 
measuring buoys, provided by Cefas (see their position in figure 3). This comparison showed 
that the technique is able to provide accurate reconstructions (see table 1). In situ data are in 
Formazin Turbidity Units (FTU). In order to compare to the in situ data, satellite reflectance 
was transformed to Formazin Nephelometric Units (FNU).

We expect that using a more realistic error variance will help to further improve the quality of 
the merged dataset. 

Figure 2: Top panel: initial MODIS marine reflectance data; bottom left: initial SEVIRI 
marine reflectance data; bottom right: reconstruction by DINEOF-OI. Date: 11 July 2008. 
Data have been transformed to Total Suspended Matter (g/m3) and are displayed in 
logarithmic scale.



Table 1: error assessment of the initial datasets and the merged product provided by 
DINEOF-OI. Units are FNU/FTU.

Ward West Gabbard

RMS Bias RMS Bias

MODIS 6.99 -0.97 2.19 0.45

SEVIRI 2.39 1.1 0.69 0.08

DINEOF-OI 5.89 -2.12 0.88 -0.49

Figure 3: position of the in situ buoys used for comparison with our data.
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1 NUMERICAL MODEL

Introduction

The objective of this work is to provide forecast of a variable measured by satellite using a time
series of images of this variable combined with the outputs of a numerical model. In the present
work the tested variable will be the total suspended matter (TSM) for which forecast will be
constructed in the southern North Sea.

DINEOF: remote-sensing measurements + model variables

↓ ↓

no explicit parametrization forecasts

In Section 1, the numerical model are presented. Then we describe the TSM data (Section 2).
Section 4 is focused on the DINEOF reconstructions using only TSM, while in Section 5 we
combine TSM data and model outputs to generate TSM forecasts.

1 Numerical model

The model outputs are obtained from the Remote Sensing and Ecosystem Modelling (REM-
SEM) team, Management Unit of the North Sea Mathematical Models (MUMM) (Lacroix et al.,
2004).

1.1 Spatial domain

The domain extends from 48◦30’N to 57◦N and from 4◦W to 9◦E. The zonal resolution is 1/12◦

and the meridional resolution is 1/24◦. The grid is made up of 157×205 grid cells.

1.2 Time period

Two periods are considered:

January 2003: outputs are available every 30 minutes, yielding 1489 time steps. This period
is used to

• compute the correlations between the different model variables and discard some of
them.

• determine the temporal resolution necessary to capture the variability of the TSM.

1 January to 31 December 2003 , with a smaller set of variables and a longer time step (Sec-
tion 3).
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1.2 Time period 1 NUMERICAL MODEL

   3oW    0o     3oE    6oE    9oE 

  50oN 

  52oN 

  54oN 

  56oN 
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BE GE

NE

∆ x=1/12°

∆ y=1/24°

157 × 205 grid

Figure 1: Spatial domain where the outputs of the numerical model are available. The shaded rectangle
delimits the area where TSM is available. Main rivers are indicated in blue.
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1.3 Model variables 1 NUMERICAL MODEL

1.3 Model variables

For a first analysis, ten variables were extracted, as described in Tab. 1. Vertical velocity was
not chosen because the North Sea is not stratified in the region of interest.

Table 1: Variables extracted from the model. The abbreviations (first column) will be used in the follow-
ing sections.

.

Abbreviations Name Units

WINDU U-Wind velocity [m/s]
WINDV V-Wind velocity [m/s]
UM2ATC Mean depth U-velocity [m/s]
VM2ATC Mean depth V-velocity [m/s]
U2ATCSurf Surface U-velocity [m/s] (σ-layer 20/20)
V2ATCSurf Surface V-velocity [m/s] (σ-layer 20/20)
U2ATCBot Bottom U-velocity [m/s] (σ-layer 1/20)
V2ATCBot Bottom V-velocity [m/s] (σ-layer 1/20)
ZETA2 Surface elevation [m] (± mean depth)
BSTOT Bottom stress [m2/s2]

1.4 Temporal variations

Each variable is spatially averaged in order to provide a time series (Fig. 2, 1489 values per
variable). All the ocean variables display tidal oscillations. The zonal wind is westward most
of the time, while the meridional component often switches from north to south. At surface,
the velocity roughly varies between −0.3 and 0.3 m/s. At the bottom, the maximal values are
lower than 0.15 m/s. The bottom stress exhibits two periods of larger amplitudes, probably
related to the wind intensity.

01 Jan 10 Jan 20 Jan 30 Jan
−5

0

5

10

15
Zonal wind

[m
/s

]

01 Jan 10 Jan 20 Jan 30 Jan
−10

−5

0

5

10
Meridional wind

[m
/s

]

Figure 2: Time evolution of the variables averaged on the domain.
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1.4 Temporal variations 1 NUMERICAL MODEL
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Figure 2: Continued.
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1.5 River run-offs 1 NUMERICAL MODEL

1.5 River run-offs

Rivers discharges are one of the main source of TSM, along with coastal erosion (Fettweis et al.,
2007). The main rivers influencing the studied region are: the rivers Meuse, Rhine, Scheldt and
Thames. Their rates of flow are represented in Fig. 3. Though these four rivers have different
locations and the measurement have different time resolution, their signal are similar, if the
amplitudes are disregarded. Measurements were obtained from Savina et al. (2010), who used
river discharges to study transport of common sole larvae with a numerical model.

The main features we observe are:

• The maximal flows in early January, with values roughly one order of magnitude higher
than the flows in spring and summer.

• A secondary maximum taking place in February.

• A period of weaker flow from April to November.
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Figure 3: Rates of flow of the main rivers of the domain.
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2 TSM SATELLITE DATA

2 TSM satellite data

The total suspended matted (TSM) is measured by satellite MODIS and is obtained in the box
48◦30’N to 53◦N and from 4◦W to 5◦E. The processing of the data is described in details in
Nechad et al. (2011). The zonal resolution is 14/100◦ (and the meridional resolution is 9/100◦,
leading to a 501×645 grid. Figure 4 shows the mean TSM field for 2003.

   4oW    2oW    0o     2oE    4oE 
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  50oN 

  51oN 

  52oN 

  53oN 

 

 

(mg/l)

0.01

0.03
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0.3

1

3

10

30

100

Figure 4: Mean TSM concentration for 2003.

2.1 Temporal variation

Figure 5 shows the domain-averaged TSM for the year 2003. From this time series, it is not
easy to identify a particular cycle, though the winter values appear higher than the summer
values. Strong peaks with value larger than 20 mg/l occur several times between January and
August. Note that this time series has to be considered with precaution, as it is constructed on
incomplete images, of which the spatial coverage may strongly vary from one day to another.

2.2 Seasonal cycle

The monthly-averaged fields (Fig. 6) display the maximal concentrations (30 mg/l) north of the
Channel (≈ 51◦N), especially along the coasts and between December and March. The lowest
concentrations are observed in the southern part of the studied region.
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Figure 5: Time-averaged TSM concentration for 2003.
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Figure 6: Monthly-averaged fields of TSM. Note the logarithmic scale
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2.3 Cloud coverage

The data coverage indicates, for each pixel of the image, the ratio between the number of images
where a TSM value is attributed to this pixel over the total number of images (Fig. 7a). Note
that the initial time series we worked on was already processed, and all the images with less
than 2% of valid pixels were removed.

Concerning the seasonal cycle of the spatial coverage, Figure 7b demonstrates that the quality
of the images is highly variable, ranging from slightly more than 2% for the worst images to
more than 97% for the best images.
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Figure 7: Spatial distribution (a) and time evolution (b) of valid pixels for the considered series of
images.
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3 MODEL VARIABLE ANALYSIS

3 Model variable analysis

In this section, the model variables are examined in order to determine an adequate time step
and to limit the number of variables.

3.1 Correlations

The correlations between the different variables are computed as follows: let us assume that A1

and Aj are column-vectors containing the data after removal of the missing values. After the
removal of the mean value:

A′i = Ai −mean(Ai)

A′j = Aj −mean(Aj)

for i, j = 1, 2, . . . 10 (the number of considered variables, see Tab. 1), the correlation is com-
puted as:

r(i, j) =
A′Ti ·A′j√

(A′Ti ·A′i)
(
A′Tj ·A′i

)
We observe large correlation (≥ 90%) between the individual velocity components at the sur-
face, the bottom, or averaged over the water column ([u2atcsurf,u2atcbot, um2atc] and
[v2atcsurf,v2atcbot, vm2atc])..

Moderate correlation (40% ≤ r ≤ 50%) between surface elevation and variables related to
zonal velocity (u2atcsurf,u2atcbot and um2atc).

For the next analysis, the 6 model variables that will be conserved are: the bottom stress, the
two components of the depth-averaged velocity, the two wind components, and the sea surface
elevation.

3.2 Fourier analysis

In order to determine the main frequencies of the variables, the time series of Section 1.4 are
applied a Fourier transform . For all the variable related to velocity, the Fourier spectrum
evidences energy peaks at

• ω = 0.2224Hz (T = 12h29′) for the bottom velocity components and the surface eleva-
tion (Fig. 10);

• ω = 0.2252Hz (T = 12h20′) for the surface and averaged velocity components (not
shown).
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Figure 8: Correlation between the 10 initial model variables for January 2003. Darker colors indicate
stronger correlations. Variable abbreviations are presented in Tab. 1.
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These values correspond to the M2 tidal frequency, which is dominant in the region of study.

The dominant frequencies regarding the wind components are not easily identifiable (Fig. 11).

Variable bstot u2atcbot u2atcsurf um2atc v2atcbot
Frequency (10−4Hz) 0.4476 0.2224 0.2252 0.2252 0.2224

Variable v2atcsurf vm2atc windu windv zeta
Frequency (10−4Hz) 0.2252 0.2252 0.0461 0.0353 0.2224
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Figure 10: Energy spectra of the sea surface elevation and the bottom stress.
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Figure 11: Energy spectra of the wind components
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4 DINEOF analysis of TSM

In this section, mono-variate DINEOF analysis of TSM is carried out using different options:

1. For the validation: we use either random data points, or artificial clouds for the cross-
validation. The validation points are used to determine the optimal number of modes.

2. For the variable: we process the original TSM values or apply a transformation on them.
(logarithm or anamorphosis).

The combinations of these options lead to 6 cases presented hereinafter.

4.1 Validation points

Two methods are tested:

1. A set of 500 cross-validation points are randomly selected.

2. The validations points have the shapes of real clouds and are extracted from random
images. Here we add artificial clouds on the 4 most covered images, leading to 3.04 % of
cloud cover added.

4.2 Transformation on data

DINEOF is a mathematical method, hence it does not know about physics. It means that un-
realistic values (e.g., negative concentrations, very high/low value of a field) may occur in the
reconstructed fields, especially when the distribution of data is very different from a normal
one (Fig. 12a). A simple bypass consists in working with the logarithm of the variable, per-
form the DINEOF analysis, and then transform back the reconstructed field. The corresponding
histogram is shown in Fig. 12b.

The second transformation implemented is the anamorphosis: all the data are considered and
we try to find an empirical transformation that will make the distribution close to a normal
distribution (Fig. 12c). After the analysis, it is easy to go back to the original variable, since the
empirical transformation is known (Fig. 12d).
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Figure 12: Histogram of the original data (a) and of the data after transformation: logarithm (b) and
anamorphosis (c). Empirical transformation function (d).

4.3 Number and importance of the modes

The six configurations lead to different numbers of modes, as summarized in Tab. 2. When
working with the original data (i.e., no transformation applied), the number of modes is 4,
whatever the method used for the validation. When working with the logarithm, the number of
modes goes from 15 (random points) to only 4 when the validation is made through artificial
clouds. Finally, the number of modes relative to the anamorphosis case doesn’t change much
with the two validations techniques.

Also note that the data transformation improves the convergence during the iterative process in
DINEOF: without any transformation, the mean number of iterations per mode is larger than
183 (the maximum number of iterations, 300, being frequently reached), whereas when we use
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transformation, this number decreases to about 90. As our goal is to set an implementation of
DINEOF producing forecasts, any reduction of the computational time is welcome.

Table 2: Optimal number of modes for the reconstruction for different options of validation and data
transformation.

Transformation Original Log Anamorphosis
Validation method

Random points 4 15 15
Clouds 4 4 13

Table 3: Importance of the first six modes (in %) for the different methods.

Random points Clouds
Original Logarithm Anamorphosis Original Logarithm Anamorphosis

Mode

1 70.67 44.44 42.58 70.67 52.05 43.07
2 10.35 27.84 29.48 10.35 31.88 30.58
3 7.52 5.20 5.25 7.52 5.49 4.97
4 5.96 3.13 3.24 5.96 3.00 3.17
5 – 2.97 2.99 – – 2.89
6 – 2.09 1.79 – – 1.83

4.4 Reconstructed fields

The different options were tested for the year 2003 and are presented in Fig. 13. To illustrate
the different reconstructions, a day with a low cloud coverage is selected (15 February).

Using the anamorphosis can lead to problems when the analysis of the considered variable
provides values out of the bounds where the transformation function (Fig. 12d) is defined. To
solve this problem, it is necessary to extend the function out of the initial bounds.
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Figure 13: Original data (a) and reconstructions for February 15, 2003: no transformation (b), loga-
rithm (c) and anamorphosis (d). The cross-validation is performed using artificial clouds.

4.5 Interpretation of the modes

The modes represented in Fig. 14 concerns the case where the logarithm of the concentration is
processed and where artificial clouds are used for the cross validation.

The first spatial mode has the largest values near the river mouths, especially in the northern
part of the domain (Rhine, Scheldt, Thames). The souther part of the studied region, south
of the Strait of Dover (51◦N), is characterized by negative values for the spatial model. The
corresponding temporal mode exhibits minimal values during summer. It is positive all year
long, except for a few values in early August (the minimum is reached on 07-Aug-2003). The
data corresponding to this day exhibits very large values of TSM (> 30 mg/l) in the south-
western part of the domain, and not along the coastline. These high concentrations may be
explained by external forcing (e.g., wind), or may be outliers, since the values are more often
on the order of 1 mg/l in this area. The first mode accounts for about 52% of the total variability.

The second mode (31.8774% of the total variance) has a pattern less obvious to interpret. The
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values of the spatial modes are negative almost everywhere, the only exceptions being the Tames
and the Scheldt mouths. The field reaches its most negative values in the coastal areas of France
and England. The temporal mode displays a decreasing amplitude from May to mid-February,
with a strong increase in spring.

The third mode (5.4905 % of the total variance) has a spatial structure similar to the first mode
in the northern part of the domain, except that the signs are different. South of the Strait of
Dover, there is a dipole structure, with the positive values approximatively west of 1◦W. The
temporal modes oscillates between negative and positive values, The extremal values observed
for the first mode (early August) also appears here. The fourth mode (not shown) account for
3% of the total variance.

The evolutions of the river flows (Section 1.5) are not rejected in any of the principal modes
shown in Fig. 14. The reason may be that a large part of the domain is not affected by rivers, so
that the river signal is not visible in the principal components.
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Figure 14: First three spatial and temporal modes. The thick black curves are 10-day running means.

19



4.5 Interpretation of the modes 4 DINEOF ANALYSIS OF TSM

(a)

   4oW    2oW    0o     2oE    4oE 

  49oN 

  50oN 

  51oN 

  52oN 

  53oN 

 

 
Spatial mode no. 3

−6

−4

−2

0

2

4

6

(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−0.3

−0.2

−0.1

0

0.1

Temporal mode no. 3

Figure 14: Continued.
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5 DINEOF forecast

This section is focused on the development of DINEOF forecasts using a time series of TSM
images (Section 2) along with a numerical model run in the same region (Section 1).

The method to test the forecast is the following:

1. From the TSM time series, select N1 days of data that will serve for the reconstruction.

2. Add N2 days of empty data, that will be reconstructed as pseudo-forecasts.

3. From the model results, extract the N1 + N2 model outputs that are the closest in time
from the TSM images (approximatively taken at 1.30 PM).

4. Perform the reconstruction with different combinations of model variables.

As a first test, we word with

• N1 = 100 TSM images,

• N2 = 10 days of forecast.

Taking into account the available images, this means that the forecast will be made on the period
1–10 May 2003.

To assess the quality of a forecast, a comparison is made with the original TSM images for days
N1 + 1, N1 + 2, . . . The first day of forecast (1 May 2003) has a good spatial coverage, allowing
for more reliable statistics on the misfits.

5.1 Univariate reconstructions

DINEOF offers the filtering of the temporal covariance matrix as a way to ensure coherence
between images that are close to each other (Alvera-Azcárate et al., 2009). Two parameters
controls the filtering of the temporal covariance matrix:

• α (unit: squared days) specifies the strength of the filter,

• p (no unit) the reach of the filter.

Prior to the DINEOF forecast using the model outputs, a series of test with different combina-
tions of the filtering parameters are run. There is a condition to guarantee the filter stability is
related to the minimal time interval between two consecutive images:

α ≤ min(∆t)2

2
.

For the validation, we used artificial clouds added to the 2 clearest images, leading to a total of
4.4282 % of cloud cover. The results of the tests are presented in Figs. 15 and 16.
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5.1.1 Expected error and number of modes

The lowest expected error was obtained for α = 0.005 d2 and 25 iterations of the filter. With
these parameters, 9 modes were necessary to make the reconstruction. From Fig. 15, it is not
easy to infer a tendency for the influence of the parameters on the expected error. However, it
appears that large (low) values of α combined with low (high) values of p lead to large (small)
errors. Also, for large values of p, the convergence of DINEOF tends to be slower.
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Figure 15: Expected error of the reconstruction for different couples (α, p).
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The number of EOF’s (Fig. 16) is stable, for the most part between 5 and 9. In some occasions
it takes larger values (19, 28), probably because of the particular combinations of parameters
for the filtering.
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Figure 16: Optimal number of modes for different couples (α, p).
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5.1.2 Correlation and RMS

Additional statistics are calculated by comparing the pseudo-forecasts for the period 1-10 May,
2003 with the original satellite images available for this period (Fig. 19): the correlation, and
the RMS of the differences between the fields.Here we concentrate on the first day of forecast
(1 May 2003).

The largest values of correlation (around 80%; Fig. 17) are obtained for large values of α and
p. The values leading to the minimal expected error (Section 5.1.1) lead to a correlation of
74.35%. The smallest values of RMS (around 0.26; Fig. 24) are also obtained for large values
of α and p.
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Figure 17: Correlation between the forecast and the original field for different couples (α, p).
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Figure 18: RMS of the difference between the forecast and the original field for different couples (α, p).

5.1.3 Results

The TSM forecasts for the period 1–3 May 2003 are performed using different combinations of
parameters obtained as described in the previous section. For the sake of conciseness, only the
following cases are presented:

• α = 0.005 d2 and p = 30

• α = 0.03 d2 and p = 60
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• α = 0.3 d2 and p = 6
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Figure 19: Original measurements of TSM corresponding to the period 1-3 May 2003.
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Figure 20: DINEOF forecasts the period 1-3 May 2003. The filter parameters are indicated on the top
of each sub-figure.

For all the combinations of parameters, the high concentration along the coast north of 51◦N
are well reproduced. The forecast with α = 0.005 d2 and p = 30 underestimates the TSM in
the south-western part of the domain.

The fields with (α = 0.03 d2, p = 60) and (α = 0.3 d2, p = 6) are very similar. Also, the three
forecasts don’t exhibit significant changes from one day to another. This is due to the choice
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of the parameters: the filtering of the time-covariance matrix is so that the forecast is almost a
copy of the last day of data.

5.2 Multivariate reconstruction

For the multivariate reconstructions, the variables (TSM and select model variable(s)) have to
be normalized:

• The vectors are normalized in order to have a unit variance.

• A second normalization is performed in order to take into account the different spatial res-
olutions and coverages for the considered variables (North et al., 1982). Without this sec-
ond normalization, the variable with the best spatial resolution would have more weight
in the reconstruction.

In the present case, the model results located outside the TSM region (Fig. 1) are discarded, in
order to have a common region. The ratio of the spatial resolution products yields:

r =
∆lonModel ×∆latModel

∆lonTSM ×∆latTSM
(1)

=
1/12◦ × 1/24◦

14/100◦ × 9/100◦
(2)

= 27.5573. (3)

One land-sea mask was also created for each model variable, because the masks are not always
the same (e.g., the wind is computed all over the domain).

5.3 TSM and Bottom stress

In this first reconstruction, the model bottom stress is used in order to improve the TSM forecast.

5.3.1 Expected error and number of modes

The next figures present again the expect error and the optimal number of modes for different
combinations of parameters α and p. Figure 21a roughly shows that increasing α and/or p
increases the expected error.

Concerning the number of modes, low values of α and p lead to a larger number of modes
(around 15), but similarly to the univariate analysis, particular combinations lead to large num-
ber of EOF’s, for instance (0.3, 6) and (0.03, 60).
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Figure 21: Expected error (a) and optimal number of modes (b) for different couples (α, p).

5.3.2 Correlation and RMS

Three combinations of α and p lead to correlations close to 80% (red tiles in Fig. 24). Two of
them have a large value for the number of iterations: p = 60. For α = 0.03 d2 and p = 60, this
means that periods shorter than

T = 2π
√
αp = 8.42 d

are filtered out from the data set. The comparison with Figs. 17 and 24 reveals that in general,
better correlations are obtained for the first day of forecast when using TSM alone, though
for some combinations of parameters, including the bottom stress in the reconstruction slightly
improves the correlations. The best correlation (≈ 77%) is obtained for α = 0.01 d2 and p = 25.
The corresponding RMS is 0.283 mg/l.

5.3.3 Results

The corresponding reconstructions is presented along with the original data (Fig. 23). The zones
of high TSM concentrations along the coasts in the northern part of the domain are correctly
reproduced, while the lower concentration south of the Channel are almost not present in the
reconstruction.
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5.3 TSM and Bottom stress 5 DINEOF FORECAST
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Figure 22: Correlation (a) and RMS (b) of the difference between the forecast and the original field for
different couples (α, p).
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Figure 23: Original TSM and reconstruction on 1 May 2003 using the model bottom stress and α =
0.01 d2, p = 25.

29



5.4 TSM and sea surface elevation 5 DINEOF FORECAST

5.4 TSM and sea surface elevation

Other model variables were checked in other to see if they can provide better results and differ-
ent optimal combinations of parameters.

5.4.1 Correlation and RMS

In this case, the sea surface elevation was selected. The best combination (α, p) is not the same
as in the previous cases: α = 0.005 d2 and p = 10, leading to a correlation close to 78% and
a RMS of 0.27 mg/l. The results are slightly improved with respect to the reconstruction using
TSM and the bottom stress.
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Figure 24: Correlation (a) and RMS (b) of the difference between the forecast and the original field for
different couples (α, p).

5.4.2 Results

The lower values of the southern part of the domain are better reproduced than in the previous
case with the bottom stress.

5.5 Summary

The different test carried out to examine the possible improvements of the reconstruction using
a model variable are summarised in Table 4. The main information is that none of the analysis
combining the TSM and a model variable provided better results (as measured by the correla-
tion) than the case when TSM was used alone. Several reasons may explain this observation:
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Figure 25: Original TSM and reconstruction on 1 May 2003 using the model sea surface elevation and
α = 0.005 d2, p = 10.

• The measures of the quality of the forecast (correlation or RMS) don’t constitute the best
option.

• The quality of the forecast depends on the selected number of modes for the reconstruc-
tion. The optimal number is the one which minimised the expected error, but not neces-
sarily the number that provides the best forecast.

• The correlations between the TSM and the model variables are not strong enough.

The values for α and p that lead to the strongest correlations are different in each case.

Table 4: Correlation, RMS and best combination of parameters for different reconstructions (univariate
and multivariate). Note that the case (TSM + velocity) was not presented in the previous sections.

Correlation RMS (mg/l) α (d2) p

TSM only 79.54 0.260 0.03 60
79.39 0.261 0.3 6

TSM + bstot 77.37 0.283 0.01 25
TSM + zeta 77.71 0.270 0.005 10

TSM + velocity 76.08 0.335 0.3 30
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6 CONCLUSIONS

6 Conclusions

In this report, we address the problem of forecasting a variable measured by satellite (TSM)
using

• previous satellite measurements of this variable,

• a numerical model run in the same region and able to provide forecast of physical vari-
ables (velocity components, wind, bottom stress, . . . ).

In DINEOF, two parameters determine the filtering of the covariance matrix:

1. α, which specifies the strength of the filter,

2. p, which controls the reach of the filter.

Both in univariate and multivariate analysis, the choice of these parameters may improve the
quality of the forecast, as measured by the RMS and the correlation.

In the southern part of the North Sea, the various tests performed did not show any improvement
in the forecast, meaning that the information contained in the numerical model does not help
for the reconstruction.

Future work will consist in running similar analysis, but with two variables already well-
correlated (e.g., forecast the chlorophyll concentration using sea-surface temperature obtained
with the model).

In the particular case of TSM, other sources of information could be used to better constrain the
reconstruction, for instance the river flows, which influence the TSM concentrations near to the
coast, or the tidal coefficients (e.g., Rivier et al., 2012).
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Annex VII

Project file





SR/12/140 - HISEA

(Geographic) study area :  The North Sea will be the main region of study. 
Additional tests will be carried out in the western Mediterranean Sea, and 
the north-east Atlantic Ocean, if needed for specific developments.

Context and objectives (max 14 lines)
Several satellites measure Sea Surface Temperature (SST), each of these with different technical 
specificities and error sources. Together with in situ data, they form a highly complementary data 
set. The creation of merged SST products, integrating the strengths of each of its components and 
minimising their weaknesses, is however not an easy task, but it is certainly a desirable goal that  
has generated a large amount of research over the last years. The objectives of this project are: (i)  
To develop a technology that allows to merge different data sets at very different sampling intervals 
(in space and time) and create an integrated product at the highest sampling frequency and with the 
highest quality possible. (ii) To provide improved, merged analyses of variables such as SST and 
chlorophyll. (iii) Obtain a better understanding of inter-sensor differences, and of the diurnal cycle of 
the studied variables. (iv) To better understand the relation between variables (and take advantage of 
this improved knowledge to ameliorate the analyses). (v) Using the above-mentioned developments, 
explore the capability of DINEOF to produce SST forecasts based on multi-variate EOFs and model 
forecasts. (vi) Finally, to improve DINEOF to meet user needs and required precision.

Methodology (max 11 lines)
DINEOF is a technique to infer missing data is satellite data sets.  In this project we will  further  
develop DINEOF so that it can merge different data sets. First, an initial DINEOF reconstruction of a 
data set with a high spatial resolution will be made, and the EOF basis obtained will be used as the 
covariance matrix needed to subsequently include into the analysis other data sources (satellite and 
in situ). Error estimations for each data set will be used to weight their influence in the final product.  



Special attention will be given to the diurnal cycle and the effect of diurnal warming in the quality of 
the measurements, and multivariate DINEOF analyses will be performed to investigate the influence 
of variables like wind and turbidity in these warming events. Finally, by combining satellite SST 
fields and model forecasts using a multivariate DINEOF, we will investigate the capability of DINEOF 
to produce SST forecasts, which will be compared to the forecast provided by numerical analyses.

Results expected(max 16 lines)
Merged high-resolution (in space and time) SST data sets and error statistics will be obtained for the 
study zones, for variable time frames within 2008 and 2010. The improvements made to the base 
technique used throughout the project (DINEOF) will be made available freely and openly the the 
scientific community (source code and documentation). Also, statistical parameters characterising 
the diurnal cycle and the difference between skin and bulk temperature will be obtained through this  
project. Finally, the technology to forecast SST based on statistical information and model data will  
be obtained as well. The portability of the developed techniques to other variables and domains will  
be reported. All results will be published in international peer-reviewed journals.

Products and services (if applicable)

Execution 
Period: December 2010 - November 2012

Laboratory: AGO-GHER-MARE, University of Liège

Discipline (select one or more appropriate disciplines)

Oceans & coasts

Environment

General Earth observation 


